Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Related tags

Deep LearningCSG
Overview

CSG-lightning

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR 2021).

Based on:

Environment Setup

Tested in a Python 3.8 environment in Linux and Windows with:

Installing the dependencies:

pip install pytorch-lightning lightning-bolts torchmetrics

Classification (VisDA17)

Dataset Setup

Download VisDA17 dataset from official website or, use the provided script for your convenience.

# The script downloads and extracts VisDA17 dataset.
# Note: It takes a very long time to download full dataset.
python datasets/prepare_visda17.py

If you downloaded the dataset manually, extract and place them as below.

📂 datasets
 ┣ 📂 visda17
 ┃ ┣ 📂 train
 ┃ ┃ 📂 validation
 ┗ ┗ 📂 test

How to run

Training

Simply run:

python run.py

or with options,

usage: run.py [-h] [-o OUTPUT] [-r ROOT] [-e EPOCHS] [-lr LEARNING_RATE] [-bs BATCH_SIZE] [-wd WEIGHT_DECAY] [--task {classification,segmentation}] [--encoder {resnet101,deeplab50,deeplab101}] [--momentum MOMENTUM] [--num-classes NUM_CLASSES] [--eval-only] [--gpus GPUS]
              [--resume RESUME] [--dev-run] [--exp-name EXP_NAME] [--augmentation AUGMENTATION] [--seed SEED] [--fc-dim FC_DIM] [--no-apool] [--single-network] [--stages STAGES [STAGES ...]] [--emb-dim EMB_DIM] [--emb-depth EMB_DEPTH] [--num-patches NUM_PATCHES]
              [--moco-weight MOCO_WEIGHT] [--moco-queue-size MOCO_QUEUE_SIZE] [--moco-momentum MOCO_MOMENTUM] [--moco-temperature MOCO_TEMPERATURE]

Evaluation

python run.py --eval-only --resume https://github.com/ryanking13/CSG/releases/download/v0.2/csg_resnet101.ckpt

Results

Model Accuracy
CSG (from paper) 64.1
CSG (reimpl) 67.1

Semantic Segmentation

Dataset Setup (GTA5 ==> Cityscapes)

Download GTA5 and Cityscapes datasets.

Place them as below.

📂 datasets
 ┣ 📂 GTA5
 ┃ ┣ 📂 images 
 ┃ ┃ ┣ 📜 00001.png
 ┃ ┃ ┣ ...
 ┃ ┃ ┗ 📜 24966.png
 ┃ ┃ ┣ 📂 labels
 ┃ ┃ ┣ 📜 00001.png
 ┃ ┃ ┣ ...
 ┃ ┃ ┗ 📜 24966.png
 ┣ 📂 cityscapes
 ┃ ┣ 📂 leftImg8bit
 ┃ ┃ ┣ 📂 train
 ┃ ┃ ┃ 📂 val
 ┗ ┗ ┗ 📂 test
 ┃ ┣ 📂 gtFine 
 ┃ ┃ ┣ 📂 train
 ┃ ┃ ┃ 📂 val
 ┗ ┗ ┗ 📂 test

How to run

Training

Simply run:

./run_seg.sh

Evaluation

./run_seg --eval-only --resume https://github.com/ryanking13/CSG/releases/download/v0.2/csg_deeplab50.ckpt

Results

Model IoU
CSG (from paper) 35.27
CSG (reimpl) 34.71

Differences from official implementation

  • Warmup LR scheduler
  • No layerwise LR modification
  • RandAugment augmentation types

Known Issues

  • I got error Distributed package doesn't have NCCL built in

On windows, nccl is not supported, try:

set PL_TORCH_DISTRIBUTED_BACKEND=gloo
You might also like...
Unofficial PyTorch implementation of
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator network.

An essential implementation of BYOL in PyTorch + PyTorch Lightning
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Unofficial implementation of
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Releases(v0.2)
Owner
Gyeongjae Choi
Gyeongjae Choi
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022