SeqTR: A Simple yet Universal Network for Visual Grounding

Overview

SeqTR

overview

This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling for visual grounding tasks under a novel point prediction paradigm.

Installation

Prerequisites

pip install -r requirements.txt
wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
pip install en_vectors_web_lg-2.1.0.tar.gz

Then install SeqTR package in editable mode:

pip install -e .

Data Preparation

  1. Download our preprocessed json files including the merged dataset for pre-training, and DarkNet-53 model weights trained on MS-COCO object detection task.
  2. Download the train2014 images from mscoco or from Joseph Redmon's mscoco mirror, of which the download speed is faster than the official website.
  3. Download original Flickr30K images, ReferItGame images, and Visual Genome images.

The project structure should look like the following:

| -- SeqTR
     | -- data
        | -- annotations
            | -- flickr30k
                | -- instances.json
                | -- ix_to_token.pkl
                | -- token_to_ix.pkl
                | -- word_emb.npz
            | -- referitgame-berkeley
            | -- refcoco-unc
            | -- refcocoplus-unc
            | -- refcocog-umd
            | -- refcocog-google
            | -- pretraining-vg 
        | -- weights
            | -- darknet.weights
            | -- yolov3.weights
        | -- images
            | -- mscoco
                | -- train2014
                    | -- COCO_train2014_000000000072.jpg
                    | -- ...
            | -- saiaprtc12
                | -- 25.jpg
                | -- ...
            | -- flickr30k
                | -- 36979.jpg
                | -- ...
            | -- visual-genome
                | -- 2412112.jpg
                | -- ...
     | -- configs
     | -- seqtr
     | -- tools
     | -- teaser

Note that the darknet.weights excludes val/test images of RefCOCO/+/g datasets while yolov3.weights does not.

Training

Phrase Localization and Referring Expression Comprehension

We train SeqTR to perform grouning at bounding box level on a single V100 GPU. The following script performs the training:

python tools/train.py configs/seqtr/detection/seqtr_det_[DATASET_NAME].py --cfg-options ema=True

[DATASET_NAME] is one of "flickr30k", "referitgame-berkeley", "refcoco-unc", "refcocoplus-unc", "refcocog-umd", and "refcocog-google".

Referring Expression Segmentation

To train SeqTR to generate the target sequence of ground-truth mask, which is then assembled into the predicted mask by connecting the points, run the following script:

python tools/train.py configs/seqtr/segmentation/seqtr_mask_[DATASET_NAME].py --cfg-options ema=True

Note that instead of sampling 18 points and does not shuffle the sequence for RefCOCO dataset, for RefCOCO+ and RefCOCOg, we uniformly sample 12 points on the mask contour and randomly shffle the sequence with 20% percentage. Therefore, to execute the training on RefCOCO+/g datasets, modify num_ray at line 1 to 18 and model.head.shuffle_fraction to 0.2 at line 35, in configs/seqtr/segmentation/seqtr_mask_darknet.py.

Evaluation

python tools/test.py [PATH_TO_CONFIG_FILE] --load-from [PATH_TO_CHECKPOINT_FILE]

Pre-training + fine-tuning

We train SeqTR on 8 V100 GPUs while disabling Large Scale Jittering (LSJ) and Exponential Moving Average (EMA):

bash tools/dist_train.sh configs/seqtr/detection/seqtr_det_pretraining-vg.py 8

Models

RefCOCO RefCOCO+ RefCOCOg
val testA testB model val testA testB model val-g val-u val-u model
SeqTR on REC 81.23 85.00 76.08 68.82 75.37 58.78 - 71.35 71.58
SeqTR* on REC 83.72 86.51 81.24 71.45 76.26 64.88 71.50 74.86 74.21
SeqTR pre-trained+finetuned on REC 87.00 90.15 83.59 78.69 84.51 71.87 - 82.69 83.37
SeqTR on RES 67.26 69.79 64.12 54.14 58.93 48.19 - 55.67 55.64
SeqTR* denotes that its visual encoder is initialized with yolov3.weights, while the visual encoder of the rest are initialized with darknet.weights.

Contributing

Our codes are highly modularized and flexible to be extended to new architectures,. For instance, one can register new components such as head, fusion to promote your research ideas, or register new data augmentation techniques just as in mmdetection library. Feel free to play :-).

Citation

@article{zhu2022seqtr,
  title={SeqTR: A Simple yet Universal Network for Visual Grounding},
  author={Zhu, ChaoYang and Zhou, YiYi and Shen, YunHang and Luo, Gen and Pan, XingJia and Lin, MingBao and Chen, Chao and Cao, LiuJuan and Sun, XiaoShuai and Ji, RongRong},
  journal={arXiv preprint arXiv:2203.16265},
  year={2022}
}

Acknowledgement

Our code is built upon the open-sourced mmcv and mmdetection libraries.

Owner
seanZhuh
what/why then how
seanZhuh
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023