An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Related tags

Machine LearningRLACE
Overview

Background

This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representations and labels y for some concept (e.g. gender), the method identifies a rank-k subsapce whose neutralization (suing an othogonal projection matrix) prevents linear classifiers from recovering the concept from the representations.

The method relies on a relaxed and constrained version of a minimax game between a predictor that aims to predict y and a projection matrix P that is optimized to prevent the prediction.

How to run

A simple running example is provided within rlace.py.

Parameters

The main method, solve_adv_game, receives several arguments, among them:

  • rank: the rank of the neutralized subspace. rank=1 is emperically enough to prevent linear prediction in binary classification problem.

  • epsilon: stopping criterion for the adversarial game. Stops if abs(acc - majority_acc) < epsilon.

  • optimizer_class: torch.optim optimizer

  • optimizer_params_predictor / optimizer_params_P: parameters for the optimziers of the predictor and the projection matrix, respectively.

Running example:

num_iters = 50000
rank=1
optimizer_class = torch.optim.SGD
optimizer_params_P = {"lr": 0.003, "weight_decay": 1e-4}
optimizer_params_predictor = {"lr": 0.003,"weight_decay": 1e-4}
epsilon = 0.001 # stop 0.1% from majority acc
batch_size = 256

output = solve_adv_game(X_train, y_train, X_dev, y_dev, rank=rank, device="cpu", out_iters=num_iters, optimizer_class=optimizer_class, optimizer_params_P =optimizer_params_P, optimizer_params_predictor=optimizer_params_predictor, epsilon=epsilon,batch_size=batch_size)

Optimization: Even though we run a concave-convex minimax game, which is generallly "well-behaved", optimziation with alternate SGD is still not completely straightforward, and may require some tuning of the optimizers. Accuracy is also not expected to monotonously decrease in optimization; we return the projection matrix which performed best along the entire game. In all experiments on binary classification problems, we identified a projection matrix that neutralizes a rank-1 subspace and decreases classification accuracy to near-random (50%).

Using the projection:

output that is returned from solve_adv_game is a dictionary, that contains the following keys:

  1. score: final accuracy of the predictor on the projected data.

  2. P_before_svd: the final approximate projection matrix, before SVD that guarantees it's a proper orthogonal projection matrix.

  3. P: a proper orthogonal matrix that neutralizes a rank-k subspace.

The ``clean" vectors are given by X.dot(output["P"]).

Owner
Shauli Ravfogel
Graduate student, BIU NLP lab
Shauli Ravfogel
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Jan Beitner 2.5k Jan 02, 2023
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
A library of sklearn compatible categorical variable encoders

Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques

2.1k Jan 07, 2023
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022