Multi-Glimpse Network With Python

Related tags

Deep LearningMGNet
Overview

Multi-Glimpse Network

Our code requires Python ≥ 3.8

Installation

For example, venv + pip:

$ python3 -m venv env
$ source env/bin/activate
(env) $ python3 -m pip install -r requirements.txt

Evaluation

Accuracy on clean images

  1. Create ImageNet100 from ImageNet (using symbolic links).
$ python3 tools/create_imagenet100.py tools/imagenet100.txt \
    /path/to/ImageNet /path/to/ImageNet100
  1. Download checkpoints from Google Drive.

  2. Test accuracy.

$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100/val \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --model resnet18 \
    --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --model resnet18 \
    --checkpoint resnet18_ours --alpha 0.6 --s 0.02

Add the flag --flop_count to count the approximate FLOPs for the inference of an image. (using fvcore)

Accuracy on adversarial attacks (PGD)

  1. Test adversarial accuracy.
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --adv --step_k 10 \
    --model resnet18 --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --adv --step_k 10 \
    --model resnet18 --checkpoint resnet18_ours --alpha 0.6 --s 0.02

Accuracy on common corruptions

  1. Create ImageNet100-C from ImageNet-C (using symbolic links).
$ python3 tools/create_imagenet100c.py  \
    tools/imagenet100.txt  /path/to/ImageNet-C/ /path/to/ImageNet100-C/
  1. Test for a single corruption.
$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100-C/pixelate/5 \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --model resnet18 \
    --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --model resnet18 \
    --checkpoint resnet18_ours --alpha 0.6 --s 0.02
  1. A simple script to test all corruptions and collect results.
# Modify tools/eval_imagenet100c.py and run it to generate script
$ python3 tools/eval_imagenet100c.py /home2/ImageNet100-C/ > run.sh
# Evaluate
$ bash run.sh
# Collect results
$ python3 tools/collect_imagenet100c.py

Training

$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100/val \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --epochs 400 --n_iter 1 --scale 1.0 \
    --model resnet18 --gpu 0,1,2,3
# Ours
$ python3 main.py $dataset --epochs 400 --n_iter 4 --scale 2.33 \
    --model resnet18 --alpha 0.6 --s 0.02  --gpu 0,1,2,3

Check tensorboard for the logs. (When training with multiple gpus, the log value may be scaled by the number of gpus except for the validation accuracy)

tensorboard  --logdir=logs

Note that we left our exploration in the code for further study, e.g., self-supervised spatial guidance, dynamic gradient re-scaling operation.

Owner
LInkedIn https://www.linkedin.com/in/sia-huat-tan-2bb6911a5/
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionnaâ„¢ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

âš¡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022