Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

Overview

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

Installation

After cloning the repo open a terminal and go to the project directory.

Change the permissions of install_env.sh by running chmod +x ./install_env.sh and run it with:

./install_env.sh

This will create a virtual environment with all the necessary libraries.

Note that it was tested with Python 3.8, CUDA 10.1, and Pytorch 1.7.1. The code should work also with newer versions of Python, CUDA, and Pytorch. If you wish to try running the code with more recent versions of these libraries, change the CUDA, TORCH, and PYTHON_V variables in install_env.sh

Then activate the virtual environment :

source ./id-generator-env/bin/activate

Datasets

To obtain access to the UHM models and generate the dataset, please follow the instructions on the github repo of UHM.

Data will be automatically generated from the UHM during the first training. In this case the training must be launched with the argument --generate_data (see below).

Prepare Your Configuration File

We made available a configuration file for each experiment (default.yaml is the configuration file of the proposed method). Make sure the paths in the config file are correct. In particular, you might have to change pca_path according to the location where UHM was downloaded.

Train and Test

To start the training from the project repo simply run:

python train.py --config=configurations/<A_CONFIG_FILE>.yaml --id=<NAME_OF_YOUR_EXPERIMENT>

If this is your first training and you wish to generate the data, run:

python train.py --generate_data --config=configurations/<A_CONFIG_FILE>.yaml --id=<NAME_OF_YOUR_EXPERIMENT>

Basic tests will automatically run at the end of the training. If you wish to run additional tests presented in the paper you can uncomment any function call at the end of test.py. If your model has alredy been trained or you are using our pretrained model, you can run tests without training:

python test.py --id=<NAME_OF_YOUR_EXPERIMENT>

Note that NAME_OF_YOUR_EXPERIMENT is also the name of the folder containing the pretrained model.

Additional Notes

We make available the files storing:

  • the precomputed down- and up-sampling transformation
  • the precomputed spirals
  • the mesh template with the face regions
  • the network weights
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.

Pyserini Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse re

Castorini 706 Dec 29, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023