PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Overview

Temporal Output Discrepancy for Active Learning

PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Introduction

  • We present a loss measurement Temporal Output Discrepancy (TOD) that estimates the loss of unlabeled samples by evaluating the distance of model outputs at different SGD steps.
  • We theoretically demonstrate that TOD is a lower-bound of accumulated sample loss.
  • An unlabeled data sampling strategy and a semi-supervised training scheme are developed for active learning based on TOD.

TOD Active Data Selection

Results

Requirements

numpy

torch >= 1.0.1

torchvision >= 0.2.1

Data Preparation

Download image classification datasets (e.g., Cifar-10, Cifar-100, SVHN, or Caltech101) and put them under ./data.

If you would like to try Caltech101 dataset, please download the pretrained ResNet-18 model and put it under ./.

Directory structure should be like:

TOD
|-- data
    |-- 101_ObjectCategories
        |-- accordion
        |-- airplanes
        |-- anchor
        |-- ...
    |-- cifar-10-batches-py
    |-- cifar-100-python
    |-- svhn
        |-- train_32x32.mat
        |-- test_32x32.mat
|-- resnet18-5c106cde.pth
|-- ...

Quick Start

Run TOD active learning experiment on Cifar-10:

bash run.sh

Specify Datasets, Active Sampling Strategies, and Auxiliary Losses

The dataset configurations, active learning settings (trials and cycles), and neural network training settings can be found in ./config folder.

We provide implementations of active data sampling strategies including random sampling, learning loss for active learning (LL4AL), and our TOD sampling. Use --sampling to specify a sampling strategy.

We also provide implementations of auxiliary training losses including LL4AL and our COD loss. Use --auxiliary to specify an auxiliary loss.

Examples

Cifar-100 dataset, TOD sampling, no unsupervised loss:

python main_TOD.py --config cifar100 --sampling TOD --auxiliary NONE

Caltech101 dataset, random sampling, COD loss:

python main_TOD.py --config caltech101 --sampling RANDOM --auxiliary TOD

SVHN dataset, LL4AL sampling, LL4AL loss:

python main_LL4AL.py --config svhn --sampling LL4AL --auxiliary LL4AL

Citation

 @inproceedings{huang2021semi,
  title={Semi-Supervised Active Learning with Temporal Output Discrepancy},
  author={Huang, Siyu and Wang, Tainyang and Xiong, Haoyi and Huan, Jun and Dou, Dejing},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
 }

Contact

Siyu Huang

[email protected]

Owner
Siyu Huang
Research Fellow
Siyu Huang
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022