Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

Overview

CMPC-Refseg

Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension.

Shaofei Huang*, Tianrui Hui*, Si Liu, Guanbin Li, Yunchao Wei, Jizhong Han, Luoqi Liu, Bo Li (* Equal contribution)

Interpretation of CMPC.

  • (a) Input referring expression and image.

  • (b) The model first perceives all the entities described in the expression based on entity words and attribute words, e.g., “man” and “white frisbee” (orange masks and blue outline).

  • (c) After finding out all the candidate entities that may match with input expression, relational word “holding” can be further exploited to highlight the entity involved with the relationship (green arrow) and suppress the others which are not involved.

  • (d) Benefiting from the relation-aware reasoning process, the referred entity is found as the final prediction (purple mask). interpretation

Experimental Results

We modify the way of feature concatenation in the end of CMPC module and achieve higher performances than the results reported in our paper. New experimental results are summarized in the table bellow. You can download our trained checkpoints to test on the four datasets. The link to the checkpoints is: Baidu Drive, pswd: jjsf.

Method UNC val UNC testA UNC testB UNC+ val UNC+ testA UNC+ testB G-Ref val ReferIt test
STEP-ICCV19 [1] 60.04 63.46 57.97 48.19 52.33 40.41 46.40 64.13
Ours-CVPR20 61.36 64.53 59.64 49.56 53.44 43.23 49.05 65.53
Ours-Updated 62.47 65.08 60.82 50.25 54.04 43.47 49.89 65.58

Setup

We recommended the following dependencies.

  • Python 2.7
  • TensorFlow 1.5
  • Numpy
  • pydensecrf

This code is derived from RRN [2]. Please refer to it for more details of setup.

Data Preparation

  • Dataset Preprocessing

We conduct experiments on 4 datasets of referring image segmentation, including UNC, UNC+, Gref and ReferIt. After downloading these datasets, you can run the following commands for data preparation:

python build_batches.py -d Gref -t train
python build_batches.py -d Gref -t val
python build_batches.py -d unc -t train
python build_batches.py -d unc -t val
python build_batches.py -d unc -t testA
python build_batches.py -d unc -t testB
python build_batches.py -d unc+ -t train
python build_batches.py -d unc+ -t val
python build_batches.py -d unc+ -t testA
python build_batches.py -d unc+ -t testB
python build_batches.py -d referit -t trainval
python build_batches.py -d referit -t test
  • Glove Embedding

Download Gref_emb.npy and referit_emb.npy and put them in data/. We provide download link for Glove Embedding here: Baidu Drive, password: 2m28.

Training

Train on UNC training set with:

python -u trainval_model.py -m train -d unc -t train -n CMPC_model -emb -f ckpts/unc/cmpc_model

Testing

Test on UNC validation set with:

python -u trainval_model.py -m test -d unc -t val -n CMPC_model -i 700000 -c -emb -f ckpts/unc/cmpc_model

CMPC for video referring segmentation

We release video version code for CMPC on A2D dataset under CMPC_video/.

Reference

[1] Chen, Ding-Jie, et al. "See-through-text grouping for referring image segmentation." Proceedings of the IEEE International Conference on Computer Vision. 2019.

[2] Li, Ruiyu, et al. "Referring image segmentation via recurrent refinement networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Citation

If our CMPC is useful to your research, please consider citing:

@inproceedings{huang2020referring,
  title={Referring Image Segmentation via Cross-Modal Progressive Comprehension},
  author={Huang, Shaofei and Hui, Tianrui and Liu, Si and Li, Guanbin and Wei, Yunchao and Han, Jizhong and Liu, Luoqi and Li, Bo},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10488--10497},
  year={2020}
}
Owner
spyflying
Two students of Cola Lab, BUAA.
spyflying
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
Flexible Option Learning - NeurIPS 2021

Flexible Option Learning This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementa

Martin Klissarov 7 Nov 09, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022