A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

Overview

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

This repository contains the source code (developed using TensorFlow 2.1.0 and Keras 2.3.0) for the proposed incremental instance segmentation framework.

Block-Diagram

Block Diagram of the Proposed Framework

The documentation related to installation, configuration, dataset, training protocols is given below. Moroever, the detailed architectural description of the CIE-Net is available in 'model_summary.txt' file.

Installation and Configuration

  1. Platform: Anaconda and MATLAB R2020a (with deep learning, image processing and computer vision toolbox).

  2. Install required packages from the provided ‘environment.yml’ file or alternatively you can install following packages yourself:

    • Python 3.7.9 or above
    • TensorFlow 2.1.0 or above
    • Keras 2.3.0 or above
    • OpenCV 4.2 or above
    • imgaug 0.2.9 or above
    • tqdm
  3. Download the desired dataset (the dataset description file is also available in this repository):

  4. The mask-level annotations for the baggage X-ray datasets can be downloaded from the following links:

  5. The box-level annotations for both baggage X-ray datasets are already released by the dataset authors.

  6. For COCO dataset, please use the MaskAPIs (provided by the dataset authors) to generate the mask-level and box-level annotations from the JSON files. We have also uploaded these APIs within this repository.

  7. For training, please provide the training configurations of the desired dataset in ‘config.py’ file.

  8. Afterward, create the two folders named as 'trainingDataset' and 'testingDataset', and arrange the dataset scans w.r.t the following hierarchy:

├── trainingDataset
│   ├── trainGT_1
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_n.png
│   ...
│   ├── trainGT_K
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_m.png
│   ├── trainImages_1
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_n.png
│   ...
│   ├── trainImages_K
│   │   └── tr_image_1.png
│   │   └── tr_image_2.png
│   │   ...
│   │   └── tr_image_m.png
│   ├── valGT_1
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_o.png
│   ...
│   ├── valGT_K
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_p.png
│   ├── valImages_1
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_o.png
│   ...
│   ├── valImages_K
│   │   └── va_image_1.png
│   │   └── va_image_2.png
│   │   ...
│   │   └── va_image_p.png

├── testingDataset
│   ├── test_images
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ├── test_annotations
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ├── segmentation_results1
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
│   ...
│   ├── segmentation_resultsK
│   │   └── te_image_1.png
│   │   └── te_image_2.png
│   │   ...
│   │   └── te_image_k.png
- Note: the images and annotations should have same name and extension (preferably png).
  1. The 'segmentation_resultsK' folder in 'testingDataset' will contains the results of K-instance-aware segmentation.
  2. The summary of the proposed CIE-Net model is available in 'model_summary.txt'.

Steps

  1. Use 'trainer.py' to incrementally train the CIE-Net. The following script will also save the model instances in the h5 file. For MvRF-CNN, use 'trainer2.py' script.
  2. Use 'tester.py' file to extract segmentation results for each model instance (the model results will be saved in 'segmentation_resultsk' folder for kth model instance). For MvRF-CNN, use 'tester2.py' script.
  3. We have also provided some converter scripts to convert e.g. original SIXray XML annotations into MATLAB structures, to port TF keras models into MATLAB etc.
  4. Also, we have provided some utility files (in the 'utils' folder) to resize dataset scans, to generate bounding boxes from CIE-Net mask output, to change the coloring scheme of the CIE-Net outputs for better visualization, and to apply post-processing etc.
  5. Please note that to run MvRF-CNN, the images have to be resized to the resolution of 320x240x3. The resizer script is in the 'utils' folder.

Citation

If you use the proposed incremental instance segmentation framework (or any part of this code) in your work, then please cite the following paper:

@article{cienet,
  title   = {A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items},
  author  = {Taimur Hassan and Samet Akcay and Mohammed Bennamoun and Salman Khan and Naoufel Werghi},
  journal = {IEEE Transactions on Systems, Man, and Cybernetics: Systems},
  year = {2021}
}

Contact

Please feel free to contact us in case of any query at: [email protected]

Owner
Taimur Hassan
Taimur Hassan
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023