PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

Overview

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

The electric grid is a key enabling infrastructure for the ambitious transition towards carbon neutrality as we grapple with climate change. With deepening penetration of renewable energy resources and electrified transportation, the reliable and secure operation of the electric grid becomes increasingly challenging. In this paper, we present PSML, a first-of-its-kind open-access multi-scale time-series dataset, to aid in the development of data-driven machine learning (ML) based approaches towards reliable operation of future electric grids. The dataset is generated through a novel transmission + distribution (T+D) co-simulation designed to capture the increasingly important interactions and uncertainties of the grid dynamics, containing electric load, renewable generation, weather, voltage and current measurements at multiple spatio-temporal scales. Using PSML, we provide state-of-the-art ML baselines on three challenging use cases of critical importance to achieve: (i) early detection, accurate classification and localization of dynamic disturbance events; (ii) robust hierarchical forecasting of load and renewable energy with the presence of uncertainties and extreme events; and (iii) realistic synthetic generation of physical-law-constrained measurement time series. We envision that this dataset will enable advances for ML in dynamic systems, while simultaneously allowing ML researchers to contribute towards carbon-neutral electricity and mobility.

Dataset Navigation

We put Full dataset in Zenodo. Please download, unzip and put somewhere for later benchmark results reproduction and data loading and performance evaluation for proposed methods.

wget https://zenodo.org/record/5130612/files/PSML.zip?download=1
7z x 'PSML.zip?download=1' -o./

Minute-level Load and Renewable

  • File Name
    • ISO_zone_#.csv: CAISO_zone_1.csv contains minute-level load, renewable and weather data from 2018 to 2020 in the zone 1 of CAISO.
  • Field Description
    • Field time: Time of minute resolution.
    • Field load_power: Normalized load power.
    • Field wind_power: Normalized wind turbine power.
    • Field solar_power: Normalized solar PV power.
    • Field DHI: Direct normal irradiance.
    • Field DNI: Diffuse horizontal irradiance.
    • Field GHI: Global horizontal irradiance.
    • Field Dew Point: Dew point in degree Celsius.
    • Field Solar Zeinth Angle: The angle between the sun's rays and the vertical direction in degree.
    • Field Wind Speed: Wind speed (m/s).
    • Field Relative Humidity: Relative humidity (%).
    • Field Temperature: Temperature in degree Celsius.

Minute-level PMU Measurements

  • File Name
    • case #: The case 0 folder contains all data of scenario setting #0.
      • pf_input_#.txt: Selected load, renewable and solar generation for the simulation.
      • pf_result_#.csv: Voltage at nodes and power on branches in the transmission system via T+D simualtion.
  • Filed Description
    • Field time: Time of minute resolution.
    • Field Vm_###: Voltage magnitude (p.u.) at the bus ### in the simulated model.
    • Field Va_###: Voltage angle (rad) at the bus ### in the simulated model.
    • Field P_#_#_#: P_3_4_1 means the active power transferring in the #1 branch from the bus 3 to 4.
    • Field Q_#_#_#: Q_5_20_1 means the reactive power transferring in the #1 branch from the bus 5 to 20.

Millisecond-level PMU Measurements

  • File Name
    • Forced Oscillation: The folder contains all forced oscillation cases.
      • row_#: The folder contains all data of the disturbance scenario #.
        • dist.csv: Three-phased voltage at nodes in the distribution system via T+D simualtion.
        • info.csv: This file contains the start time, end time, location and type of the disturbance.
        • trans.csv: Voltage at nodes and power on branches in the transmission system via T+D simualtion.
    • Natural Oscillation: The folder contains all natural oscillation cases.
      • row_#: The folder contains all data of the disturbance scenario #.
        • dist.csv: Three-phased voltage at nodes in the distribution system via T+D simualtion.
        • info.csv: This file contains the start time, end time, location and type of the disturbance.
        • trans.csv: Voltage at nodes and power on branches in the transmission system via T+D simualtion.
  • Filed Description

    trans.csv

    • Field Time(s): Time of millisecond resolution.
    • Field VOLT ###: Voltage magnitude (p.u.) at the bus ### in the transmission model.
    • Field POWR ### TO ### CKT #: POWR 151 TO 152 CKT '1 ' means the active power transferring in the #1 branch from the bus 151 to 152.
    • Field VARS ### TO ### CKT #: VARS 151 TO 152 CKT '1 ' means the reactive power transferring in the #1 branch from the bus 151 to 152.

    dist.csv

    • Field Time(s): Time of millisecond resolution.
    • Field ####.###.#: 3005.633.1 means per-unit voltage magnitude of the phase A at the bus 633 of the distribution grid, the one connecting to the bus 3005 in the transmission system.

Installation

  • Install PSML from source.
git clone https://github.com/tamu-engineering-research/Open-source-power-dataset.git
  • Create and activate anaconda virtual environment
conda create -n PSML python=3.7.10
conda activate PSML
  • Install required packages
pip install -r ./Code/requirements.txt

Package Usage

We've prepared the standard interfaces of data loaders and evaluators for all of the three time series tasks:

(1) Data loaders

We prepare the following Pytorch data loaders, with both data processing and splitting included. You can easily load data with a few lines for different tasks by simply modifying the task parameter.

from Code.dataloader import TimeSeriesLoader

loader = TimeSeriesLoader(task='forecasting', root='./PSML') # suppose the raw dataset is downloaded and unzipped under Open-source-power-dataset
train_loader, test_loader = loader.load(batch_size=32, shuffle=True)

(2) Evaluators

We also provide evaluators to support fair comparison among different approaches. The evaluator receives the dictionary input_dict (we specify key and value format of different tasks in evaluator.expected_input_format), and returns another dictionary storing the performance measured by task-specific metrics (explanation of key and value can be found in evaluator.expected_output_format).

from Code.evaluator import TimeSeriesEvaluator
evaluator = TimeSeriesEvaluator(task='classification', root='./PSML') # suppose the raw dataset is downloaded and unzipped under Open-source-power-dataset
# learn the appropriate format of input_dict
print(evaluator.expected_input_format) # expected input_dict format
print(evaluator.expected_output_format) # expected output dict format
# prepare input_dict
input_dict = {
    'classification': classfication,
    'localization': localization,
    'detection': detection,
}
result_dict = evaluator.eval(input_dict)
# sample output: {'#samples': 110, 'classification': 0.6248447204968943, 'localization': 0.08633372048006195, 'detection': 42.59349593495935}

Code Navigation

Please see detailed explanation and comments in each subfolder.

  • BenchmarkModel
    • EventClassification: baseline models for event detection, classification and localization
    • LoadForecasting: baseline models for hierarchical load and renewable point forecast and prediction interval
    • Synthetic Data Generation: baseline models for synthetic data generation of physical-laws-constrained PMU measurement time series
  • Joint Simulation: python codes for joint steady-state and transient simulation between transmission and distribution systems
  • Data Processing: python codes for collecting the real-world load and weather data

License

The PSML dataset is published under CC BY-NC 4.0 license, meaning everyone can use it for non-commercial research purpose.

Suggested Citation

  • Please cite the following paper when you use this data hub:
    X. Zheng, N. Xu, L. Trinh, D. Wu, T. Huang, S. Sivaranjani, Y. Liu, and L. Xie, "PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids." (2021).

Contact

Please contact us if you need further technical support or search for cooperation. Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Email contact:   Le Xie,   Yan Liu,   Xiangtian Zheng,   Nan Xu,   Dongqi Wu,   Loc Trinh,   Tong Huang,   S. Sivaranjani.

You might also like...
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

 Learning Energy-Based Models by Diffusion Recovery Likelihood
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

A PyTorch implementation of
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Releases(v1.0.0)
  • v1.0.0(Nov 10, 2021)

    The electric grid is a key enabling infrastructure for the ambitious transition towards carbon neutrality as we grapple with climate change. With deepening penetration of renewable energy resources and electrified transportation, the reliable and secure operation of the electric grid becomes increasingly challenging. In this paper, we present PSML, a first-of-its-kind open-access multi-scale time-series dataset, to aid in the development of data-driven machine learning based approaches towards reliable operation of future electric grids. The dataset is generated through a novel transmission + distribution co-simulation designed to capture the increasingly important interactions and uncertainties of the grid dynamics, containing electric load, renewable generation, weather, voltage and current measurements at multiple spatio-temporal scales. Using PSML, we provide state-of-the-art ML baselines on three challenging use cases of critical importance to achieve: (i) early detection, accurate classification and localization of dynamic disturbance events; (ii) robust hierarchical forecasting of load and renewable energy with the presence of uncertainties and extreme events; and (iii) realistic synthetic generation of physical-law-constrained measurement time series. We envision that this dataset will provide use-inspired ML research in dynamic safety-critical systems, while simultaneously enabling ML researchers to contribute towards decarbonization of energy sectors.

    Source code(tar.gz)
    Source code(zip)
Owner
Texas A&M Engineering Research
Texas A&M Engineering Research
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
Learning Visual Words for Weakly-Supervised Semantic Segmentation

[IJCAI 2021] Learning Visual Words for Weakly-Supervised Semantic Segmentation Implementation of IJCAI 2021 paper Learning Visual Words for Weakly-Sup

Lixiang Ru 24 Oct 05, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022