Machine Learning Study 혼자 해보기

Overview

Machine Learning Study 혼자 해보기


기여자 (Contributors)


Teddy Lee

🏠

HongJaeKwon

🏠

Seungwoo Han

🏠

Tae Heon Kim

🏠

Steve Kwon

🏠

SW Song

🏠

K1A2

🏠

Wooil Jeong

🏠

더 많은 분들이 도움을 받으실 수 있도록, 좋은 공유 자료에 대하여 Pull Request를 날려주세요!


지식공유 (Knowledge Sharings)

블로그, 유튜브를 통해 지식공유를 실천하고 있습니다.

취지

This repository is intended for personal study in machine-learning

머신러닝 분야를 스스로 스터디 하는 많은 분들께 도움이 되고자 작성하였습니다.

온라인 상에서 좋은 분들이 공유해 주신 Lecture와 Blog를 참고하여 스터디 하실 수 있습니다.

직접 들은 강의는 코멘트하였으나, 지극히 개인적인 의견이 반영 되었습니다.


동영상 강의 묶음, 재생목록 (Video Lectures)

Video 강좌는 제가 개인적으로 생각하는 순차적 학습 단계 입니다. 물론, 난이도와도 연관이 있습니다.

파이썬 (Python), 데이터분석 (Pandas, Numpy), 시각화 (Matplotlib, Seaborn, Bokeh, Folium)

수학 (Mathmatics) & 통계 (Statistics)

머신러닝 (Machine Learning) & 딥러닝 (Deep Learning)

국가 공인 자격증

주제별 (By Subjects)

수학 (Mathmatics)

통계 (Statistics)

머신러닝 (Machine Learning)

딥러닝 (Deep Learning)

최적화 & AutoML (Optimization & AutoML)

메타러닝 (Meta Learning)

액티브러닝 (Active Learning)

연합학습 (Federated Learning)

시각화 (Visualization)

기타 (Others)

캐글 & 데이콘

캐글이 처음이라면?

Hello Kaggle!

Kaggle Tutorial | PyTorch Basic

Kaggle Tutorial | Image/Object Detection

Kaggle Tutorial | Natural Language Processing

Kaggle Tutorial | R Machine Learning

강의 & 강연

정형데이터

강연

노트북

캐글 & 데이콘 대회 분류

입문 (For Beginners)

비전 (Vision)

시계열 (Time Series)

음성

블로그 (Blogs)

깃헙 저장소 (GitHub)

튜토리얼(Tutorial)

강의(Lecture)

자연어처리(Natural Language Processing

Computer Vision

Signal Processing

GAN

논문

서적 예제

웹사이트 (Web Sites)

  • 머신러닝 용어집
    • 머신러닝 용어들이 정리되어 있는 구글 developer 사이트.
  • pandas tutorial
    • 판다스 튜토리얼 (주요 api 위주로 진행하는 튜토리얼)
  • 20 minutes to matplotlib
    • 20분안에 빠르게 훓어보는 matplotlib (주요 api 위주로 진행하는 튜토리얼)
  • 각 종 CheatSheet 모음
    • python, pandas, numpy, matplotlib, seaborn 등등 각종 CheatSheet 모음집
  • Paper With Code
    • 논문과 관련된 깃허브 저장소를 동시에 제공합니다.
  • Codetorial
    • numpy, matpoltlib, tensorflow 뿐만 아니라 파이썬에서 많이 사용되는 라이브러리들에 대한 튜토리얼들이 정리되어 있습니다.
  • Keras Examples
    • 케라서 공식 도큐먼트에서 제공되는 example 예제 모음. 300줄 이하의 코드로 구성되어 있으며, 다양한 기본 예제들이 있다.
  • 자연어처리 100제
    • 자연어 처리 관련된 문제 100제를 풀어보는 사이트
  • 자연어(NLP) 처리 기초 정리
  • Machine Learning Mastery(영문)
    • 머신 러닝 개념을 파이썬 코드를 통해 직접 구현해 볼 수 있습니다. 제공해 주는 Python 코드 예제가 좋습니다.
  • Deep Note
    • Jupyter Notebook에 도전장을 내미는 데이터 사이언스 Notebook. 궁금하신 분들은 사용해 보시길!
  • OpenAI Spinning Up
    • OpenAI의 강화 학습 교육 자료
  • GUI for TensorFlow
    • GUI로 텐서플로우 모델 만들기
  • arXiv - 논문저장소
    • 논문 저장소. 인공지능, 프로그래밍 등 거의 모든 논문을 찾아볼 수 있다.
  • arXiv sanity
    • 일정 기간동안 원하는 주제에 대한 인기 있는 arXiv 논문을 볼 수 있다.
  • PyTorch 입문코스 5개
    • 마이크로소프트 Learn. 파이토치 기초, 파이토치를 사용한 이미지/자연어/오디오
  • PyTorch 튜토리얼 (한글)
    • PyTorch 웹사이트에서 제공하는 공식 튜토리얼의 한글 번역 버전

위키독스 (Wiki Docs)

유튜브 채널 (YouTube Channel)

  • SKPlanet TAcademy
    • 인공지능 강의 뿐만아니라 테크 분야의 다양한 분야의 정말 좋은 강의를 무료로 제공합니다.
  • 빵형의 개발도상국
    • 재미난 인공지능을 활용한 다양한 프로젝트를 진행해보고 풀이까지 쉽게 제공.
  • 한요섭님 - 딥러닝
    • 논문에 대한 리뷰, 구현까지 쉽게 설명해주시는 강의형 영상이 있습니다.
  • 이유한님 - 캐글
    • 캐글 커널 리뷰와 다양한 캐글 팁들을 알려주시는 영상으로 구성되어 있는 채널.
  • 허민석님 - Minsuk Heo
    • 딥러닝 관련 영상들이 많이 게재되어 있으며, 깔끔한 PPT와 쉽고 간결한 설명의 강의 영상들이 많다.
  • 공돌이의 수학정리노트
    • 공돌이의 수학정리노트 블로그에 이은, 쉽게 설명하는 수학 강의 영상 채널.
  • 혁펜하임
    • 머신러닝, 딥러닝 관련 강의를 재밌고, 이해 하기 쉽게 설명하는 유튜브 채널.
  • 퇴근후딴짓
    • 캐글 튜토리얼과 다양한 머신러닝 툴에 대해서도 다룹니다. 차분하게 배워볼 수 있는 유튜브 채널.
  • 테디노트
    • 텐서플로우 관련 영상들이 주를 이룹니다. 데이터 분석, 머신러닝, 그리고 딥러닝 주제를 다루는 유튜브 채널.
  • StatQuest with Josh Starmer
    • 머신러닝의 배경이 되는 통계학을 그림과 함께 쉽고 간결하게 설명해 주는 채널.
  • Venelin Valkov
    • 머신러닝을 활용한 예제 및 정보를 소개해주는 채널
  • sentdex
    • 머신러닝을 활용한 프로젝트 및 강좌 채널
  • 통계의 본질 EOStatistics
    • 통계의 이론 강의가 쉽게 설명되어 있는 유튜브 채널. 특히, 손으로 푸는 통계 강의 목록이 초심자에게는 매우 이해하기 쉽게 설명되어 있다.
  • Upstage
    • 김성훈 교수님, 이활석님, 박은정님께서 창업하신 인공지능(AI) 전문기업 업스테이지의 유튜브 채널. 입문자를 위한 캐글 관련 영상들이 게재되어 있고, 그 밖에 유용한 정보들도 있다.
  • AI프렌즈
    • 인공지능 기술을 공유하는 산-학-연 중심의 비영리 연구모임. 유튜브 라이브로 게스트를 초청하여 약 2시간 분량의 발표를 진행 / 녹화하여 공유하고 있다.

논문 읽기 (YouTube)

데이터 사이언티스트 스토리 (Data Scientist Story)

코딩하는 테크보이 워니

Data Scientist이지영님

터닝포인트TP, 취업 전문 유튜브

딥러닝호형 DL bro

데이터 사이언스를 공부하고 싶은 분들을 위한 글

페이스북 그룹 (Facebook Groups)

라이브러리 (Library)

  • Tensorflow
    • 딥 뉴럴 네트워크
  • PyTorch
    • 딥 뉴럴 네트워크
  • Scikit-learn
    • 머신러닝
  • BindsNET
    • 스파이킹 뉴럴 네트워크 for Pytorch
  • NengoDL
    • 스파이킹 뉴럴 네트워크 for Tensorflow
  • HpBandster
    • 하이퍼밴드 및 베이지안-하이퍼밴드 기반 파라미터 최적화 라이브러리

오픈데이터

텐서플로우 자격증

빅데이터 분석기사

기타

Owner
Teddy Lee
Google TensorFlow Developers Certificate. Interested in ML, DL, Lectures, Knowledge Sharing
Teddy Lee
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
A simple machine learning python sign language detection project.

SST Coursework 2022 About the app A python application that utilises the tensorflow object detection algorithm to achieve automatic detection of ameri

Xavier Koh 2 Jun 30, 2022
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
Diabetes Prediction with Logistic Regression

Diabetes Prediction with Logistic Regression Exploratory Data Analysis Data Preprocessing Model & Prediction Model Evaluation Model Validation: Holdou

AZİZE SULTAN PALALI 2 Oct 23, 2021
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
Deploy AutoML as a service using Flask

AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

Chris Rawles 221 Nov 04, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022