Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Overview

Lingvo

PyPI Python

Documentation

License

What is it?

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

A list of publications using Lingvo can be found here.

Table of Contents

Releases

PyPI Version Commit
0.10.0 075fd1d88fa6f92681f58a2383264337d0e737ee
0.9.1 c1124c5aa7af13d2dd2b6d43293c8ca6d022b008
0.9.0 f826e99803d1b51dccbbbed1ef857ba48a2bbefe
Older releases

PyPI Version Commit
0.8.2 93e123c6788e934e6b7b1fd85770371becf1e92e
0.7.2 b05642fe386ee79e0d88aa083565c9a93428519e

Details for older releases are unavailable.

Major breaking changes

NOTE: this is not a comprehensive list. Lingvo releases do not offer any guarantees regarding backwards compatibility.

HEAD

Nothing here.

0.10.0

  • General
    • The theta_fn arg to CreateVariable() has been removed.

0.9.1

  • General
    • Python 3.9 is now supported.
    • ops.beam_search_step now takes and returns an additional arg beam_done.
    • The namedtuple beam_search_helper.BeamSearchDecodeOutput now removes the field done_hyps.

0.9.0

  • General
    • Tensorflow 2.5 is now the required version.
    • Python 3.5 support has been removed.
    • py_utils.AddGlobalVN and py_utils.AddPerStepVN have been combined into py_utils.AddVN.
    • BaseSchedule().Value() no longer takes a step arg.
    • Classes deriving from BaseSchedule should implement Value() not FProp().
    • theta.global_step has been removed in favor of py_utils.GetGlobalStep().
    • py_utils.GenerateStepSeedPair() no longer takes a global_step arg.
    • PostTrainingStepUpdate() no longer takes a global_step arg.
    • The fatal_errors argument to custom input ops now takes error message substrings rather than integer error codes.
Older releases

0.8.2

  • General
    • NestedMap Flatten/Pack/Transform/Filter etc now expand descendent dicts as well.
    • Subclasses of BaseLayer extending from abc.ABCMeta should now extend base_layer.ABCLayerMeta instead.
    • Trying to call self.CreateChild outside of __init__ now raises an error.
    • base_layer.initializer has been removed. Subclasses no longer need to decorate their __init__ function.
    • Trying to call self.CreateVariable outside of __init__ or _CreateLayerVariables now raises an error.
    • It is no longer possible to access self.vars or self.theta inside of __init__. Refactor by moving the variable creation and access to _CreateLayerVariables. The variable scope is set automatically according to the layer name in _CreateLayerVariables.

Details for older releases are unavailable.

Quick start

Installation

There are two ways to set up Lingvo: installing a fixed version through pip, or cloning the repository and building it with bazel. Docker configurations are provided for each case.

If you would just like to use the framework as-is, it is easiest to just install it through pip. This makes it possible to develop and train custom models using a frozen version of the Lingvo framework. However, it is difficult to modify the framework code or implement new custom ops.

If you would like to develop the framework further and potentially contribute pull requests, you should avoid using pip and clone the repository instead.

pip:

The Lingvo pip package can be installed with pip3 install lingvo.

See the codelab for how to get started with the pip package.

From sources:

The prerequisites are:

  • a TensorFlow 2.6 installation,
  • a C++ compiler (only g++ 7.3 is officially supported), and
  • the bazel build system.

Refer to docker/dev.dockerfile for a set of working requirements.

git clone the repository, then use bazel to build and run targets directly. The python -m module commands in the codelab need to be mapped onto bazel run commands.

docker:

Docker configurations are available for both situations. Instructions can be found in the comments on the top of each file.

How to install docker.

Running the MNIST image model

Preparing the input data

pip:

mkdir -p /tmp/mnist
python3 -m lingvo.tools.keras2ckpt --dataset=mnist

bazel:

mkdir -p /tmp/mnist
bazel run -c opt //lingvo/tools:keras2ckpt -- --dataset=mnist

The following files will be created in /tmp/mnist:

  • mnist.data-00000-of-00001: 53MB.
  • mnist.index: 241 bytes.

Running the model

pip:

cd /tmp/mnist
curl -O https://raw.githubusercontent.com/tensorflow/lingvo/master/lingvo/tasks/image/params/mnist.py
python3 -m lingvo.trainer --run_locally=cpu --mode=sync --model=mnist.LeNet5 --logdir=/tmp/mnist/log

bazel:

(cpu) bazel build -c opt //lingvo:trainer
(gpu) bazel build -c opt --config=cuda //lingvo:trainer
bazel-bin/lingvo/trainer --run_locally=cpu --mode=sync --model=image.mnist.LeNet5 --logdir=/tmp/mnist/log --logtostderr

After about 20 seconds, the loss should drop below 0.3 and a checkpoint will be saved, like below. Kill the trainer with Ctrl+C.

trainer.py:518] step:   205, steps/sec: 11.64 ... loss:0.25747201 ...
checkpointer.py:115] Save checkpoint
checkpointer.py:117] Save checkpoint done: /tmp/mnist/log/train/ckpt-00000205

Some artifacts will be produced in /tmp/mnist/log/control:

  • params.txt: hyper-parameters.
  • model_analysis.txt: model sizes for each layer.
  • train.pbtxt: the training tf.GraphDef.
  • events.*: a tensorboard events file.

As well as in /tmp/mnist/log/train:

  • checkpoint: a text file containing information about the checkpoint files.
  • ckpt-*: the checkpoint files.

Now, let's evaluate the model on the "Test" dataset. In the normal training setup the trainer and evaler should be run at the same time as two separate processes.

pip:

python3 -m lingvo.trainer --job=evaler_test --run_locally=cpu --mode=sync --model=mnist.LeNet5 --logdir=/tmp/mnist/log

bazel:

bazel-bin/lingvo/trainer --job=evaler_test --run_locally=cpu --mode=sync --model=image.mnist.LeNet5 --logdir=/tmp/mnist/log --logtostderr

Kill the job with Ctrl+C when it starts waiting for a new checkpoint.

base_runner.py:177] No new check point is found: /tmp/mnist/log/train/ckpt-00000205

The evaluation accuracy can be found slightly earlier in the logs.

base_runner.py:111] eval_test: step:   205, acc5: 0.99775392, accuracy: 0.94150388, ..., loss: 0.20770954, ...

Running the machine translation model

To run a more elaborate model, you'll need a cluster with GPUs. Please refer to third_party/py/lingvo/tasks/mt/README.md for more information.

Running the GShard transformer based giant language model

To train a GShard language model with one trillion parameters on GCP using CloudTPUs v3-512 using 512-way model parallelism, please refer to third_party/py/lingvo/tasks/lm/README.md for more information.

Running the 3d object detection model

To run the StarNet model using CloudTPUs on GCP, please refer to third_party/py/lingvo/tasks/car/README.md.

Models

Automatic Speech Recognition

Car

Image

Language Modelling

Machine Translation

References

Please cite this paper when referencing Lingvo.

@misc{shen2019lingvo,
    title={Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling},
    author={Jonathan Shen and Patrick Nguyen and Yonghui Wu and Zhifeng Chen and others},
    year={2019},
    eprint={1902.08295},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

License

Apache License 2.0

Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022