The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

Overview

TwoStageAlign

The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

Paper | Supp

Abstract

Denoising and demosaicking are two essential steps to reconstruct a clean full-color image from the raw data. Recently, joint denoising and demosaicking (JDD) for burst images, namely JDD-B, has attracted much attention by using multiple raw images captured in a short time to reconstruct a single high-quality image. One key challenge of JDD-B lies in the robust alignment of image frames. State-of-the-art alignment methods in feature domain cannot effectively utilize the temporal information of burst images, where large shifts commonly exist due to camera and object motion. In addition, the higher resolution (e.g., 4K) of modern imaging devices results in larger displacement between frames. To address these challenges, we design a differentiable two-stage alignment scheme sequentially in patch and pixel level for effective JDD-B. The input burst images are firstly aligned in the patch level by using a differentiable progressive block matching method, which can estimate the offset between distant frames with small computational cost. Then we perform implicit pixel-wise alignment in full-resolution feature domain to refine the alignment results. The two stages are jointly trained in an end-to-end manner. Extensive experiments demonstrate the significant improvement of our method over existing JDD-B methods.

Framework

Framework of 2 Stage Align

Test

Pretrain models

REDS4

  • we only put an example of REDS4 in dataset folder, please download the full testset in official website, RED.
  • More detail can refer to data preparation
python /codes/test_Vid4_REDS4_joint_2stage_REDS4.py

Videezy

  • To evaluate the performance on 4K burst images/video, we collect several clips from website.
  • Dataset: Google Drive
python /codes/test_Vid4_REDS4_joint_2stage_Videezy4K.py

SC_burst (Smartphone burst) Dataset

python /codes/test_Vid4_REDS4_joint_2stage_RealCaptured.py

Train

python -m torch.distributed.launch --nproc_per_node=2 --master_port=4540 train.py -opt options/train/train_GCP_Net.yml --launcher pytorch

Environment

  • Refer to the requirement.txt
  • We utilize pytorch 1.2 and the deformable version does not support pytorch > 1.3. Thus when you use newest pytorch, please replace deformable version to newest (refer to BasicSR).

Citation

@article{guo2022differentiable,
  title={A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift},
  author={Guo, Shi and Yang, Xi and Ma, Jianqi and Ren, Gaofeng and Zhang, Lei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Acknowledgement

This repo is built upon the framework of EDVR, and we borrow some code from Unprocessing denoising, thanks for their excellent work!

Owner
Shi Guo
PhD candidate in Hong Kong Polytechnic University. Interested in low-level vision problem.
Shi Guo
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022