Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Overview

Gym-TORCS

Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic car racing simulator recently used as RL benchmark task in several AI studies.

Gym-TORCS is the python wrapper of TORCS for RL experiment with the simple interface (similar, but not fully) compatible with OpenAI-gym environments. The current implementaion is for only the single-track race in practie mode. If you want to use multiple tracks or other racing mode (quick race etc.), you may need to modify the environment, "autostart.sh" or the race configuration file using GUI of TORCS.

This code is developed based on vtorcs (https://github.com/giuse/vtorcs) and python-client for torcs (http://xed.ch/project/snakeoil/index.html).

The detailed explanation of original TORCS for AI research is given by Daniele Loiacono et al. (https://arxiv.org/pdf/1304.1672.pdf)

Because torcs has memory leak bug at race reset. As an ad-hoc solution, we relaunch and automate the gui setting in torcs. Any better solution is welcome!

Requirements

We are assuming you are using Ubuntu 14.04 LTS/16.04 LTS machine and installed

Example Code

The example code and agent are written in example_experiment.py and sample_agent.py.

Initialization of the Race

After the insallation of vtorcs-RL-color, you need to initialize the race setting. You can find the detailed explanation in a document (https://arxiv.org/pdf/1304.1672.pdf), but here I show the simple gui-based setting.

So first you need to run

sudo torcs

in the terminal, the GUI of TORCS should be launched. Then, you need to choose the race track by following the GUI (Race --> Practice --> Configure Race) and open TORCS server by selecting Race --> Practice --> New Race. This should result that TORCS keeps a blue screen with several text information.

If you need to treat the vision input in your AI agent, you have to set the small image size in TORCS. To do so, you have to run

python snakeoil3_gym.py

in the second terminal window after you open the TORCS server (just as written above). Then the race starts, and you can select the driving-window mode by F2 key during the race.

After the selection of the driving-window mode, you need to set the appropriate gui size. This is done by using the display option mode in Options --> Display. You can select the Screen Resolution, and you need to select 64x64 for visual input (our immplementation only support this screen size, other screen size results the unreasonable visual information). Then, you need to shut down TORCS to complete the configuration for the vision treatment.

Simple How-To

from gym_torcs import TorcsEnv

#### Generate a Torcs environment
# enable vision input, the action is steering only (1 dim continuous action)
env = TorcsEnv(vision=True, throttle=False)

# without vision input, the action is steering and throttle (2 dim continuous action)
# env = TorcsEnv(vision=False, throttle=True)

ob = env.reset(relaunch=True)  # with torcs relaunch (avoid memory leak bug in torcs)
# ob = env.reset()  # without torcs relaunch

# Generate an agent
from sample_agent import Agent
agent = Agent(1)  # steering only
action = agent.act(ob, reward, done, vision=True)

# single step
ob, reward, done, _ = env.step(action)

# shut down torcs
env.end()

Add Noise in Low-dim Sensors

If you want to apply sensor noise in low-dimensional sensors, you should

os.system('torcs -nofuel -nodamage -nolaptime -vision -noisy &')
os.system('torcs -nofuel -nolaptime -noisy &')

at 33 & 35th lines in gym_torcs.py

Great Application

gym-torcs was utilized in DDPG experiment with Keras by Ben Lau. This experiment is really great!

https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html

Acknowledgement

gym_torcs was developed during the spring internship 2016 at Preferred Networks.

Owner
naoto yoshida
Ugoku-Namakemono (Moving Sloth). Computational philosopher. Connectionist. Behavior designer of autonomous robots.
naoto yoshida
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022