Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Overview

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Official implementation of paper Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks.

Quick Start

Simulation Experiments

Preparation

You'll need some external large data, which can be downloaded via:

See our Jupyter notebooks at ./notebooks for SRA implementations.

CIFAR-10

Follow ./notebooks/sra_cifar10.ipynb, you can try subnet replacement attacks on:

  • VGG-16
  • ResNet-110
  • Wide-ResNet-40
  • MobileNet-V2

ImageNet

We actually don't use ImageNet full train set. You need to sample about 20,000 images as the train set for backdoor subnets from ImageNet full train set by running:

python models/imagenet/prepare_data.py

(remember to configure the path to your ImageNet full train set first!)

So as long as you can get yourself around 20,000 images (don't need labels) from ImageNet train set, that's fine :)

Then follow ./notebooks/sra_imagenet.ipynb, you can try subnet replacement attacks on:

  • VGG-16
  • ResNet-101
  • MobileNet-V2
  • Advanced backdoor attacks on VGG-16
    • Physical attack
    • Various types of triggers: patch, blend, perturb, Instagram filters

VGG-Face

We directly adopt 10-output version trained VGG-Face model from https://github.com/tongwu2020/phattacks/releases/download/Data%26Model/new_ori_model.pt, and most work from https://github.com/tongwu2020/phattacks.

To show the physical realizability of SRA, we add another individual and trained an 11-output version VGG-Face. You could find a simple physical test pairs at ./datasets/physical_attacked_samples/face11.jpg and ./datasets/physical_attacked_samples/face11_phoenix.jpg.

Follow ./notebooks/sra_vggface.ipynb, you can try subnet replacement attacks on:

  • 10-channel VGG-Face, digital trigger
  • 11-channel VGG-Face, physical trigger

Defense

We also test Neural Cleanse, against SRA, attempting to reverse engineer our injected trigger. The code implementation is available at ./notebooks/neural_cleanse.ipynb, mostly borrowed from TrojanZoo. Some reverse engineered triggers generated by us are available under ./defenses.

System-Level Experiments

See ./system_attacks/README.md for details.

Results & Demo

Digital Triggers

CIFAR-10

Model Arch ASR(%) CAD(%)
VGG-16 100.00 0.24
ResNet-110 99.74 3.45
Wide-ResNet-40 99.66 0.64
MobileNet-V2 99.65 9.37

ImageNet

Model Arch Top1 ASR(%) Top5 ASR(%) Top1 CAD(%) Top5 CAD(%)
VGG-16 99.92 100.00 1.28 0.67
ResNet-101 100.00 100.00 5.68 2.47
MobileNet-V2 99.91 99.96 13.56 9.31

Physical Triggers

We generate physically transformed triggers in advance like:

Then we patch them to clean inputs for training, e.g.:

Physically robust backdoor attack demo:

See ./notebooks/sra_imagenet.ipynb for details.

More Triggers

See ./notebooks/sra_imagenet.ipynb for details.

Repository Structure

.
├── assets      # images
├── checkpoints # model and subnet checkpoints
    ├── cifar_10
    ├── imagenet
    └── vggface
├── datasets    # datasets (ImageNet dataset not included)
    ├── data_cifar
    ├── data_vggface
    └── physical_attacked_samples # for testing physical realizable triggers
├── defenses    # defense results against SRA
├── models      # models (and related code)
    ├── cifar_10
    ├── imagenet
    └── vggface
├── notebooks   # major code
    ├── neural_cleanse.ipynb
    ├── sra_cifar10.ipynb # SRA on CIFAR-10
    ├── sra_imagenet.ipynb # SRA on ImageNet
    └── sra_vggface.ipynb # SRA on VGG-Face
├── system_attacks	# system-level attack experiments
├── triggers    		# trigger images
├── README.md   		# this file
└── utils.py    		# code for subnet replacement, average meter etc.
Owner
Xiangyu Qi
PHD student @ Princeton ECE.
Xiangyu Qi
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022