On Evaluation Metrics for Graph Generative Models

Overview

On Evaluation Metrics for Graph Generative Models

Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor

This is the official repository for the paper On Evaluation Metrics for Graph Generative Models (hyperlink TBD). Our evaluation metrics enable the efficient computation of the distance between two sets of graphs regardless of domain. In addition, they are more expressive than previous metrics and easily incorporate continuous node and edge features in evaluation. If you're primarily interested in using our metrics in your work, please see evaluation/ for a more lightweight setup and installation and Evaluation_examples.ipynb for examples on how to utilize our code. The remainder of this README describes how to recreate our results which introduces additional dependencies.

Table of Contents

Requirements and installation

The main requirements are:

  • Python 3.7
  • PyTorch 1.8.1
  • DGL 0.6.1
pip install -r requirements.txt

Following that, install an appropriate version of DGL 0.6.1 for your system and download the proteins and ego datasets by running ./download_datasets.sh.

Reproducing main results

The arguments of our scripts are described in config.py.

Permutation experiments

Below, examples to run the scripts to run certain experiments are shown. In general, experiments can be run as:

python main.py --permutation_type={permutation type} --dataset={dataset}\
{feature_extractor} {feature_extractor_args}

For example, to run the mixing random graphs experiment on the proteins dataset using random-GNN-based metrics for a single random seed:

python main.py --permutation_type=mixing-random --dataset=proteins\
gnn

The hyperparameters of the GNN are set to our recommendations by default, however, they are easily changed by additional flags. To run the same experiment using the degree MMD metric:

python main.py --permutation_type=mixing-random --dataset=proteins\
mmd-structure --statistic=degree

Rank correlations are automatically computed and printed at the end of each experiment, and results are stored in experiment_results/. Recreating our results requires running variations of the above commands thousands of times. To generate these commands and store them in a bash script automatically, run python create_bash_script.py.

Pretraining GNNs

To pretrain a GNN for use in our permutation experiments, run python GIN_train.py, and see GIN_train.py for tweakable hyperparameters. Alternatively, the pretrained models used in our experiments can be downloaded by running ./download_pretrained_models.sh. Once you have a pretrained model, the permutation experiments can be ran using:

python main.py --permutation_type={permutation type} --dataset={dataset}\
gnn --use_pretrained {feature_extractor_args}

Generating graphs

Some of our experiments use graphs generated by GRAN. To find instructions on training and generating graphs using GRAN, please see the official GRAN repository. Alternatively, the graphs generated by GRAN used in our experiments can be downloaded by running ./download_gran_graphs.sh.

Visualization

All code for visualizing results and creating tables is found in data_visualization.ipynb.

License

We release our code under the MIT license.

Citation

@inproceedings{thompson2022evaluation,
  title={On Evaluation Metrics for Graph Generative Models},
  author={Thompson, Rylee, and Knyazev, Boris and Ghalebi, Elahe and Kim, Jungtaek, and Taylor, Graham W},
booktitle={International Conference on Learning Representations},
  year={2022}  
}
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"

Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb

14 Dec 20, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022