GAN JAX - A toy project to generate images from GANs with JAX

Related tags

Deep LearningGANJax
Overview

GAN JAX - A toy project to generate images from GANs with JAX

This project aims to bring the power of JAX, a Python framework developped by Google and DeepMind to train Generative Adversarial Networks for images generation.

JAX

JAX logo

JAX is a framework developed by Deep-Mind (Google) that allows to build machine learning models in a more powerful (XLA compilation) and flexible way than its counterpart Tensorflow, using a framework almost entirely based on the nd.array of numpy (but stored on the GPU, or TPU if available). It also provides new utilities for gradient computation (per sample, jacobian with backward propagation and forward-propagation, hessian...) as well as a better seed system (for reproducibility) and a tool to batch complicated operations automatically and efficiently.

Github link: https://github.com/google/jax

GAN

GAN diagram

Generative adversarial networks (GANs) are algorithmic architectures that use two neural networks, pitting one against the other (thus the adversarial) in order to generate new, synthetic instances of data that can pass for real data. They are used widely in image generation, video generation and voice generation. GANs were introduced in a paper by Ian Goodfellow and other researchers at the University of Montreal, including Yoshua Bengio, in 2014. Referring to GANs, Facebook’s AI research director Yann LeCun called adversarial training the most interesting idea in the last 10 years in ML. (source)

Original paper: https://arxiv.org/abs/1406.2661

Some ideas have improved the training of the GANs by the years. For example:

Deep Convolution GAN (DCGAN) paper: https://arxiv.org/abs/1511.06434

Progressive Growing GAN (ProGAN) paper: https://arxiv.org/abs/1710.10196

The goal of this project is to implement these ideas in JAX framework.

Installation

You can install JAX following the instruction on JAX - Installation

It is strongly recommended to run JAX on Linux with CUDA available (Windows has no stable support yet). In this case you can install JAX using the following command:

pip install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_releases.html

Then you can install Tensorflow to benefit from tf.data.Dataset to handle the data and the pre-installed dataset. However, Tensorfow allocate memory of the GPU on use (which is not optimal for running calculation with JAX). Therefore, you should install Tensorflow on the CPU instead of the GPU. Visit this site Tensorflow - Installation with pip to install the CPU-only version of Tensorflow 2 depending on your OS and your Python version.

Exemple with Linux and Python 3.9:

pip install tensorflow -f https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.6.0-cp39-cp39-manylinux2010_x86_64.whl

Then you can install the other librairies from requirements.txt. It will install Haiku and Optax, two usefull add-on libraries to implement and optimize machine learning models with JAX.

pip install -r requirements.txt

Install CelebA dataset (optional)

To use the CelebA dataset, you need to download the dataset from Kaggle and install the images in the folder img_align_celeba/ in data/CelebA/images. It is recommended to download the dataset from this source because the faces are already cropped.

Note: the other datasets will be automatically installed with keras or tensorflow-datasets.

Quick Start

You can test a pretrained GAN model by using apps/test.py. It will download the model from pretrained models (in pre_trained/) and generate pictures. You can change the GAN to test by changing the path in the script.

You can also train your own GAN from scratch with apps/train.py. To change the parameters of the training, you can change the configs in the script. You can also change the dataset or the type of GAN by changing the imports (there is only one workd to change for each).

Example to train a GAN in celeba (64x64):

from utils.data import load_images_celeba_64 as load_images

To train a DCGAN:

from gan.dcgan import DCGAN as GAN

Then you can implement your own GAN and train/test them in your own dataset (by overriding the appropriate functions, check the examples in the repository).

Some results of pre-trained models

- Deep Convolution GAN

  • On MNIST:

DCGAN Cifar10

  • On Cifar10:

DCGAN Cifar10

  • On CelebA (64x64):

DCGAN CelebA-64

- Progressive Growing GAN

  • On MNIST:

  • On Cifar10:

  • On CelebA (64x64):

  • On CelebA (128x128):

Owner
Valentin Goldité
Student at CentraleSupelec (top french Engineer School) specialized in machine learning (Computer Vision, NLP, Audio, RL, Time Analysis).
Valentin Goldité
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022