Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Overview

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution with consistent and accurate localization. It features several algorithmic innovations that increase speed, accuracy, and robustness of pose estimation in perceptually-challenging environments and has been extensively tested on aerial and legged robots.

This work was part of NASA JPL Team CoSTAR's research and development efforts for the DARPA Subterranean Challenge, in which DLO was the primary state estimation component for our fleet of autonomous aerial vehicles.


drawing drawing

drawing

Instructions

DLO requires an input point cloud of type sensor_msgs::PointCloud2 with an optional IMU input of type sensor_msgs::Imu. Note that although IMU data is not required, it can be used for initial gravity alignment and will help with point cloud registration.

Dependencies

Our system has been tested extensively on both Ubuntu 18.04 Bionic with ROS Melodic and Ubuntu 20.04 Focal with ROS Noetic, although other versions may work. The following configuration with required dependencies has been verified to be compatible:

  • Ubuntu 18.04 or 20.04
  • ROS Melodic or Noetic (roscpp, std_msgs, sensor_msgs, geometry_msgs, pcl_ros)
  • C++ 14
  • CMake >= 3.16.3
  • OpenMP >= 4.5
  • Point Cloud Library >= 1.10.0
  • Eigen >= 3.3.7

Installing the binaries from Aptitude should work though:

sudo apt install libomp-dev libpcl-dev libeigen3-dev 

Compiling

Create a catkin workspace, clone the direct_lidar_odometry repository into the src folder, and compile via the catkin_tools package (or catkin_make if preferred):

mkdir ws && cd ws && mkdir src && catkin init && cd src
git clone https://github.com/vectr-ucla/direct_lidar_odometry.git
catkin build

Execution

After sourcing the workspace, launch the DLO odometry and mapping ROS nodes via:

roslaunch direct_lidar_odometry dlo.launch \
  pointcloud_topic:=/robot/velodyne_points \
  imu_topic:=/robot/vn100/imu

Make sure to edit the pointcloud_topic and imu_topic input arguments with your specific topics. If IMU is not being used, set the dlo/imu ROS param to false in cfg/dlo.yaml. However, if IMU data is available, please allow DLO to calibrate and gravity align for three seconds before moving. Note that the current implementation assumes that LiDAR and IMU coordinate frames coincide, so please make sure that the sensors are physically mounted near each other.

Test Data

For your convenience, we provide example test data here (9 minutes, ~4.2GB). To run, first launch DLO (with default point cloud and IMU topics) via:

roslaunch direct_lidar_odometry dlo.launch

In a separate terminal session, play back the downloaded bag:

rosbag play dlo_test.bag

drawing

Citation

If you found this work useful, please cite our manuscript:

@article{chen2021direct,
  title={Direct LiDAR Odometry: Fast Localization with Dense Point Clouds},
  author={Chen, Kenny and Lopez, Brett T and Agha-mohammadi, Ali-akbar and Mehta, Ankur},
  journal={arXiv preprint arXiv:2110.00605},
  year={2021}
}

Acknowledgements

We thank the authors of the FastGICP and NanoFLANN open-source packages:

  • Kenji Koide, Masashi Yokozuka, Shuji Oishi, and Atsuhiko Banno, “Voxelized GICP for Fast and Accurate 3D Point Cloud Registration,” in IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2021, pp. 11 054–11 059.
  • Jose Luis Blanco and Pranjal Kumar Rai, “NanoFLANN: a C++ Header-Only Fork of FLANN, A Library for Nearest Neighbor (NN) with KD-Trees,” https://github.com/jlblancoc/nanoflann, 2014.

License

This work is licensed under the terms of the MIT license.


drawing drawing

drawing drawing

Comments
  • Coordinate system conversion

    Coordinate system conversion

    Hi, thanks for your great work. I used my lidar and imu to record the data set and run it in DLO. The following figure is the map generated by the algorithm. I found that IMU drift is very serious. Is this related to coordinate system transformation? How can I set up and configure files to improve this situation? d0724d53975aa58f749b1abfa692456 3ae5711ad4dc74f03c683af98bc7db9

    opened by HomieRegina 15
  • HI, I use the nanoicp to location, but it cann`t work

    HI, I use the nanoicp to location, but it cann`t work

    Thanks for your work, I want to use nanoicp to location, it cann`t work right, but I use the pcl Gicp, it can work, so, there is anything i need to do?

    opened by tust13018211 10
  • Map generation

    Map generation

    Hi, How is the map generated? What algorithm is used? Can we upload a pcd map of the environment and then apply dlo just for localisation? I assumed dlo as a localisation algorithm, but it seems to take in the point cloud data from the bag file and generate a map on its own.

    opened by Srichitra-S 9
  • gicp speed

    gicp speed

    I run source code each scan's gicp process just cost 2-3 ms, when i run my own code use gicp library it cost 100-200ms. Both Input cloud's size almost same, which setting options may cause this phenomenon?

    opened by yst1 8
  • how to localize on a given pcd map?

    how to localize on a given pcd map?

    i have a trouble understanding how to localise on a given 3d pcd map, can anyone explain the steps

    i have a pcd map which i can load into rviz, and i have lidar-points and imu data, then how to use this package for localization?

    opened by srinivasrama 6
  • jacobian

    jacobian

    Hello author, I want to derive the jacobian in the code. I see we use global perturbation to update. When i try this, i meet this problem to look for your help. image When using Woodbury matrix identity it seems to make the formula more complicated, so i'm stuck to look for your help. Thanks for your help in advance!

    Best regards Xiaoliang jiao

    opened by narutojxl 6
  • the transformation between your lidar and imu?

    the transformation between your lidar and imu?

    I use a vlp16 lidar and a microstran imu(3DM-GX5-25) to run your program. But I failed. I think my transformation between imu and lidar is different from yours. So could you tell your true transformation between imu and lidar. the following pitcure is my configuration: 453670779 Thank you very much!

    opened by nonlinear1 6
  • Conversion of lidar and IMU coordinate system

    Conversion of lidar and IMU coordinate system

    Hi! I use a vlp16 lidar and a microstran imu(3DM-GX5-25) to record bags. And here is the part of the map I built with your algorithm. Because the coordinate systems of IMU and lidar are not consistent in the physical direction, this has affected the construction of the two-layer environment. Could you please tell me how to convert IMU and lidar coordinate system? 图片

    opened by HomieRegina 4
  • some trivial questions

    some trivial questions

    Hello authors, I have some trivial questions to look for your help. Thanks for your help.

    opened by narutojxl 4
  • Coordinate Frame

    Coordinate Frame

    Hi,

    Thank you for sharing this great work.

    I've set of problem such as defining the coordinate system of the odometry . Which coordinate frame do you use for odometry NED or BODY. I thought you use NED coordinate frame so that I expected when I move Lidar + IMU to the North direction, x should be positive increased but it has not been stable behaviour. I also moved the system to the East direction it should be caused positive increase on y axis but same problem. I think you use BODY frame or something different coordinate frame for odometry.

    I wonder also how do you send odometry information to the autopilot of drone. I prefered mavros and selected the related odometry ros topic and send them without change so I saw the odometry message in the autopilot but when odometry receive to the autopilot of drone it looks like x and y exchanged in autopilot even they are not exchanged odometry output of direct lidar odometry.

    Summary of the Question is that which coordinate frame do you use for odometry ? How can I set up the odometry frame to NED? x and y are negative decreased when I move lidar+imu to the North and the East respectively. and Z looks like 180 reversed. Should I multiply x and y with minus or apply rotation matrix to fix negative decreasing x, y odometry ?

    How can I ensure that autopilot and your odometry coordinate plane are in the same coordinate plane ?

    opened by danieldive 3
  • How to correct point cloud caused by motion?

    How to correct point cloud caused by motion?

    Hi, thank you for your great work about DLO. I have a question. When the robot is moving fast, the lidar point cloud will generate distortion due to movement, which will cause negative impact on the construction of the map. So how did DLO deal with this problem?

    opened by JACKLiuDay 2
Releases(v1.4.2)
Owner
VECTR at UCLA
Verifiable & Control-Theoretic Robotics Laboratory
VECTR at UCLA
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022