Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.

Overview

Net2Vis Teaser Net2Vis Teaser_Legend

Net2Vis

βœ… Automatic Network Visualization

βœ… Levels of Abstraction

βœ… Unified Design

Created by Alex BΓ€uerle, Christian van Onzenoodt and Timo Ropinski.

Accessible online.

What is this?

Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.

How does this help me?

When looking at publications that use neural networks for their techniques, it is still apparent how they differ. Most of them are handcrafted and thus lack a unified visual grammar. Handcrafting such visualizations also creates ambiguities and misinterpretations.

With Net2Vis, these problems are gone. It is designed to provide an abstract network visualization while still providing general information about individual layers. We reflect the number of features as well as the spatial resolution of the tensor in our glyph design. Layer-Types can be identified through colors. Since these networks can get fairly complex, we added the possibility to group layers and thus compact the network through replacing common layer sequences.

The best of it: Once the application runs, you just have to paste your Keras code into your browser and the visualization is automatically generated based on that. You still can tweak your visualizations and create abstractions before downloading them as SVG and PDF.

How can I use this?

Either, go to our Website, or install Net2Vis locally. Our website includes no setup, but might be slower and limited in network size depending on what you are working on. Installing this locally allows you to modify the functionality and might be better performing than the online version.

Installation

Starting with Net2Vis is pretty easy (assuming python3, tested to run on python 3.6-3.8, and npm).

  1. Clone this Repo
  2. For the Backend to work, we need Cairo and Docker installed on your machine. This is used for PDF conversion and running models pasted into the browser (more) secure.

For docker, the docker daemon needs to run. This way, we can run the pasted code within separate containers.

For starting up the backend, the following steps are needed:

  1. Go into the backend folder: cd backend
  2. Install backend dependencies by running pip3 install -r requirements.txt
  3. Install the docker container by running docker build --force-rm -t tf_plus_keras .
  4. To start the server, issue: python3 server.py

The frontend is a react application that can be started as follows:

  1. Go into the frontend folder: cd net2vis
  2. Install the javascript dependencies using: npm install
  3. Start the frontend application with: npm start

Model Presets

For local installations only: If you want to replicate any of the network figures in our paper, or just want to see examples for visualizations, we have included all network figures from our paper for you to experiment with. To access those simply use the following urls:

For most of these URL endings, you will probably also find networks in the official version, however, there is no guarantee that they wont have been changed.

Citation

If you find this code useful please consider citing us:

@article{bauerle2019net2vis,
  title={Net2Vis: Transforming Deep Convolutional Networks into Publication-Ready Visualizations},
  author={B{\"a}uerle, Alex and Ropinski, Timo},
  journal={arXiv preprint arXiv:1902.04394},
  year={2019}
}

Acknowlegements

This work was funded by the Carl-Zeiss-Scholarship for Ph.D. students.

Owner
Visual Computing Group (Ulm University)
Visual Computing Group (Ulm University)
pytorch implementation of "Distilling a Neural Network Into a Soft Decision Tree"

Soft-Decision-Tree Soft-Decision-Tree is the pytorch implementation of Distilling a Neural Network Into a Soft Decision Tree, paper recently published

Kim Heecheol 262 Dec 04, 2022
Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Hendrik Strobelt 1.1k Jan 04, 2023
Pytorch implementation of convolutional neural network visualization techniques

Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in

Utku Ozbulak 7k Jan 03, 2023
Logging MXNet data for visualization in TensorBoard.

Logging MXNet Data for Visualization in TensorBoard Overview MXBoard provides a set of APIs for logging MXNet data for visualization in TensorBoard. T

Amazon Web Services - Labs 327 Dec 05, 2022
A Practical Debugging Tool for Training Deep Neural Networks

Cockpit is a visual and statistical debugger specifically designed for deep learning!

31 Aug 14, 2022
πŸŽ† A visualization of the CapsNet layers to better understand how it works

CapsNet-Visualization For more information on capsule networks check out my Medium articles here and here. Setup Use pip to install the required pytho

Nick Bourdakos 387 Dec 06, 2022
A collection of infrastructure and tools for research in neural network interpretability.

Lucid Lucid is a collection of infrastructure and tools for research in neural network interpretability. We're not currently supporting tensorflow 2!

4.5k Jan 07, 2023
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Bias and Fairness Audit Toolkit

The Bias and Fairness Audit Toolkit Aequitas is an open-source bias audit toolkit for data scientists, machine learning researchers, and policymakers

Data Science for Social Good 513 Jan 06, 2023
Implementation of linear CorEx and temporal CorEx.

Correlation Explanation Methods Official implementation of linear correlation explanation (linear CorEx) and temporal correlation explanation (T-CorEx

Hrayr Harutyunyan 34 Nov 15, 2022
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.3k Jan 08, 2023
Interpretability and explainability of data and machine learning models

AI Explainability 360 (v0.2.1) The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datase

1.2k Dec 29, 2022
Convolutional neural network visualization techniques implemented in PyTorch.

This repository contains a number of convolutional neural network visualization techniques implemented in PyTorch.

1 Nov 06, 2021
Using / reproducing ACD from the paper "Hierarchical interpretations for neural network predictions" 🧠 (ICLR 2019)

Hierarchical neural-net interpretations (ACD) 🧠 Produces hierarchical interpretations for a single prediction made by a pytorch neural network. Offic

Chandan Singh 111 Jan 03, 2023
ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments.

ModelChimp What is ModelChimp? ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments. ModelChimp provides the followi

ModelChimp 124 Dec 21, 2022
Model analysis tools for TensorFlow

TensorFlow Model Analysis TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on

1.2k Dec 26, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Comprehensive collection of Pixel Attribution methods for Computer Vision.

Jacob Gildenblat 6.5k Jan 01, 2023
A python library for decision tree visualization and model interpretation.

dtreeviz : Decision Tree Visualization Description A python library for decision tree visualization and model interpretation. Currently supports sciki

Terence Parr 2.4k Jan 02, 2023
πŸ‘‹πŸ¦Š Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

πŸ‘‹πŸ¦Š Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

DEEL 343 Jan 02, 2023