[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Related tags

Deep LearningMAK
Overview

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling

Introduction

Contrastive learning approaches have achieved great success in learning visual representations with few labels. That implies a tantalizing possibility of scaling them up beyond a curated target benchmark, to incorporating more unlabeled images from the internet-scale external sources to enhance its performance. However, in practice, with larger amount of unlabeled data, it requires more compute resources for the bigger model size and longer training. Moreover, open-world unlabeled data have implicit long-tail distribution of various class attributes, many of which are out of distribution and can lead to data imbalancedness issue. This motivates us to seek a principled approach of selecting a subset of unlabeled data from an external source that are relevant for learning better and diverse representations. In this work, we propose an open-world unlabeled data sampling strategy called Model-Aware K-center (MAK), which follows three simple principles: (1) tailness, which encourages sampling of examples from tail classes, by sorting the empirical contrastive loss expectation (ECLE) of samples over random data augmentations; (2) proximity, which rejects the out-of-distribution outliers that might distract training; and (3) diversity, which ensures diversity in the set of sampled examples. Empirically, using ImageNet-100-LT (without labels) as the target dataset and two ``noisy'' external data sources, we demonstrate that MAK can consistently improve both the overall representation quality and class balancedness of the learned features, as evaluated via linear classifier evaluation on full-shot and few-shot settings.

Method

pipeline

Environment

Requirements:

pytorch 1.7.1 
opencv-python
kmeans-pytorch 0.3
scikit-learn

Recommend installation cmds (linux)

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch # change cuda version according to hardware
pip install opencv-python
conda install -c conda-forge matplotlib scikit-learn

Sampling

Prepare

change the access permissions

chmod +x  cmds/shell_scrips/*

Get pre-trained model on LT datasets

bash ./cmds/shell_scrips/imagenet-100-add-data.sh -g 2 -p 4866 -w 10 --seed 10 --additional_dataset None

Sampling on ImageNet 900

Inference

inference on sampling dataset (no Aug)

bash ./cmds/shell_scrips/imagenet-100-inference.sh -p 5555 --workers 10 --pretrain_seed 10 \
--epochs 1000 --batch_size 256 --inference_dataset imagenet-900 --inference_dataset_split ImageNet_900_train \
--inference_repeat_time 1 --inference_noAug True

inference on sampling dataset (no Aug)

bash ./cmds/shell_scrips/imagenet-100-inference.sh -p 5555 --workers 10 --pretrain_seed 10 \
--epochs 1000 --batch_size 256 --inference_dataset imagenet-100 --inference_dataset_split imageNet_100_LT_train \
--inference_repeat_time 1 --inference_noAug True

inference on sampling dataset (w/ Aug)

bash ./cmds/shell_scrips/imagenet-100-inference.sh -p 5555 --workers 10 --pretrain_seed 10 \
--epochs 1000 --batch_size 256 --inference_dataset imagenet-900 --inference_dataset_split ImageNet_900_train \
--inference_repeat_time 10

sampling 10K at Imagenet900

bash ./cmds/shell_scrips/sampling.sh --pretrain_seed 10

Citation

@inproceedings{
jiang2021improving,
title={Improving Contrastive Learning on Imbalanced Data via Open-World Sampling},
author={Jiang, Ziyu and Chen, Tianlong and Chen, Ting and Wang, Zhangyang},
booktitle={Advances in Neural Information Processing Systems 35},
year={2021}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022