LSSY量化交易系统

Related tags

Deep LearningLSSY
Overview

LSSY量化交易系统

该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开。购买课程的朋友可以找我获取实盘部分和去邀请码。

支持A股和可转债市场并且可以实盘全自动交易的量化交易系统。

开源的目的是希望能有更多的人来参与社区维护,共同打造最完美的量化交易系统。

目前市场上集量化回测、实盘交易的系统并不多,适用A股的更是寥寥无几,要么收费高昂,LSSY量化交易系统为了让研究量化交易的朋友人人都能用,所以在此开源,并且完全免费,希望更多的人来参与完善系统,贡献自己的一份力量,避免大家重复劳动。

LSSY量化交易系统致力于量化交易,不再主观交易,通过数据,做大概率,让量化交易变得更容易,大家都可以参与完善,为了更好的利于社区发展,目前采用邀请制,使用邀请码才能完整的使用LSSY量化交易系统,提交代码或者邀请朋友都可以免费获得邀请码(在社区讨论QQ群发放)。

使用LSSY量化交易系统编写海龟交易法则

https://edu.csdn.net/course/detail/31900

LSSY量化交易系统的全面详细分析视频教程

https://edu.csdn.net/course/detail/31906

安装

  • Windows

    1.安装Linux子系统,选择ubuntu子系统。

    2.给子系统安装pip3

    sudo apt install python3-pip
    

    3.安装数据库

    sudo apt install redis
    

    4.启动数据库,子系统不能自动启动,所以每次都需要手动启动数据库服务,所以不建议在Windows上运行。

    redis-server
    
  • Linux

    1.安装 redis 数据库

    sudo apt install redis
    

    2.需要 python3.8

    下载源码编译安装:https://www.python.org/ftp/python/3.8.7/Python-3.8.7.tar.xz

执行安装脚本

./install.sh

启动LSSY量化交易系统

进入实盘交易

./runWork.py

进入回测

./runWork.py b

访问前端

推荐分辨率>=2k

http://127.0.0.1:8000/

redis 快照报错

修改配置文件

/etc/redis/redis.conf

找到

################################ SNAPSHOTTING  ################################
...
...
stop-writes-on-bgsave-error yes

改为

stop-writes-on-bgsave-error no

初次启动注意事项

首次部署LSSY量化交易系统,会下载大量财务历史等数据,根据网络情况可能会很慢,建议晚上睡觉前启动系统,一般到第二天就全部下载完成了,仅首次运行,后续每天只需要更新k线即可,速度会快很多。

QQ群讨论社区:174647513

Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022