An experiment to bait a generalized frontrunning MEV bot

Overview

Honeypot 🍯

A simple experiment that:

  • Creates a honeypot contract
  • Baits a generalized fronturnning bot with a unique transaction
  • Analyze bot behaviour using a black box approach

Final project for ChainShort bootcamp Oct 2021 cohort.

Presentation Deck

The project presentation deck is in presentation directory. It gives an overview about the project.

Experiment addresses and txs

Honeypot contract address: 0x1e232d5871979eaa715de2c38381574a9c886bad

Bot contract: 0x31B7e144b2CF261A015004BEE9c84a98263E2F66

Bot operator: 0x0a04e8b4d2014cd2d07a9eaf946945bed1262a99

Failed tx 1 (block 13710082, index 22): 0xcc1172506d5b5fa09cbf66d2296deb24958181f186817eb29cbe8385fd55ed51

Frontrun tx 1 (block 13710082, index 0): 0x18ec2c2e5720c6d332a0f308f8803e834e06c78dcebdc255178891ead56c6d73

Failed tx 2 (block 13710542, index 80): 0xfce9b77a8c7b8544cb699ce646558dc506e030aaba1533c917d7841bcc3f206a

Frontrun tx 2 (block 13710542, index 0): 0x8cda6e76f9a19ce69967d9f74d52402afbafba6ca3469248fe5c9937ef065d47

Running contract tests

The contract tests are written in Solidity. To run them:

  1. Install dapptools on your machine
  2. Navigate to the project root directory in terminal, then dapp install ds-test
  3. Rename .dapprc.template to .dapprc and add your Ethereum RPC endpoint
  4. Use dapp test to run the tests.

PnL dataset

To create or update the PnL dataset:

  1. Make sure you have Python 3 and the relevant modules installed on your machine
  2. Rename config.template.py to config.py and add your Etherscan API key and Alchemy RPC endpoint
  3. Run python analysis/create_pnl_datasets.py in your terminal

Analysis

You can view the analysis files on GitHub. If you want to edit and run them, you need to run Jupyter Notebook server with Anaconda or something similar.

Known limitations

These limitaitons are known by the time of the final presentation:

  • Unoptimized performance and too many JSON-RPC calls in when fetching data
  • PnL computation is based on heuristic, not EVM state changes
  • Outlier detection is based on manual sample check
  • A few hardcoded simplifications like constant token prices
  • No test for pnl.py and calldata.py
Owner
0x1355
Parsing json. Deciphering bytes. And putting it all together again.
0x1355
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021