Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

Overview

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set)


Description

The PyOpenVINO is a spin-off product from my deep learning algorithm study work. This project is aiming at neither practical performance nor rich functionalities. PyOpenVINO can load an OpenVINO IR model (.xml/.bin) and run it. The implementation is quite straightforward and naive. No Optimization technique is used. Thus, the code is easy to read and modify. Supported API is quite limited, but it mimics OpenVINO IE Python API. So, you can easily read and modify the sample code too.

  • Developed as a spin-off from my deep learning study work.
  • Very slow and limited functionality. Not a general DL inference engine.
  • Naive and straightforward code: (I hope) This is a good reference for learning deep-learning technology.
  • Extensible ops: Ops are implemented as plugins. You can easily add your ops as needed.

How to run

Steps 1 and 2 are optional since the converted MNIST IR model is provided.

  1. (Optional) Train a model and generate a 'saved_model' with TensorFlow
python mnist-tf-training.py

The trained model data will be created under ./mnist-savedmodel directory.

  1. (Optional) Convert TF saved_model into OpenVINO IR model
    Prerequisite: You need to have OpenVINO installed (Model Optimizer is required).
convert-model.bat

Converted IR model (.xml/.bin) will be generated in ./models directory.

  1. Run pyOpenVINO sample program
python test_pyopenvino.py

You'll see the output like this.

pyopenvino>python test_pyopenvino.py
inputs: [{'name': 'conv2d_input', 'type': 'Parameter', 'version': 'opset1', 'data': {'element_type': 'f32', 'shape': (1, 1, 28, 28)}, 'output': {0: {'precision': 'FP32', 'dims': (1, 1, 28, 28)}}}]
outputs: [{'name': 'Func/StatefulPartitionedCall/output/_11:0', 'type': 'Result', 'version': 'opset1', 'input': {0: {'precision': 'FP32', 'dims': (1, 10)}}}]
# node_name, time (sec)
conv2d_input Parameter, 0.0
conv2d_input/scale_copy Const, 0.0
StatefulPartitionedCall/sequential/conv2d/Conv2D Convolution, 0.11315417289733887
StatefulPartitionedCall/sequential/conv2d/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/conv2d/Relu ReLU, 0.0010142326354980469
StatefulPartitionedCall/sequential/max_pooling2d/MaxPool MaxPool, 0.020931482315063477
StatefulPartitionedCall/sequential/conv2d_1/Conv2D/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d_1/Conv2D Convolution, 0.04333162307739258
StatefulPartitionedCall/sequential/conv2d_1/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d_1/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/conv2d_1/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/max_pooling2d_1/MaxPool MaxPool, 0.006029367446899414
StatefulPartitionedCall/sequential/target_conv_layer/Conv2D/ReadVariableOp Const, 0.0010688304901123047
StatefulPartitionedCall/sequential/target_conv_layer/Conv2D Convolution, 0.004073381423950195
StatefulPartitionedCall/sequential/target_conv_layer/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu/Transpose/value6071024 Const, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu/Transpose Transpose, 0.0
StatefulPartitionedCall/sequential/flatten/Const Const, 0.0
StatefulPartitionedCall/sequential/flatten/Reshape Reshape, 0.0
StatefulPartitionedCall/sequential/dense/MatMul/ReadVariableOp Const, 0.0010004043579101562
StatefulPartitionedCall/sequential/dense/MatMul MatMul, 0.0013704299926757812
StatefulPartitionedCall/sequential/dense/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/dense/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/dense_1/MatMul/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense_1/MatMul MatMul, 0.0
StatefulPartitionedCall/sequential/dense_1/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense_1/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/dense_1/Softmax SoftMax, 0.0009992122650146484
Func/StatefulPartitionedCall/output/_11:0 Result, 0.0
@TOTAL_TIME, 0.21120882034301758
0.21120882034301758 sec/inf
Raw result: {'Func/StatefulPartitionedCall/output/_11:0': array([[7.8985136e-07, 2.0382247e-08, 9.9999917e-01, 1.0367385e-10,
        1.0184062e-10, 1.6024957e-12, 2.0729640e-10, 1.6014919e-08,
        6.5354638e-10, 9.5946295e-14]], dtype=float32)}
Result: [2 0 1 7 8 6 3 4 5 9]
  1. Run Draw-and-Inter demo
python draw-and-infer.py

How to Operate

  • Left click to draw points.
  • Right click to clear the canvas.
    This demo program is using 'numpy' kernels for performance.
    draw-and-infer

A Littile Description of the Implementation

IR model internal representation

This inference engine uses networkx.DiGraph as the internal representation of the IR model. IR model will be translated into nodes and edges.
The nodes represent the ops, and it holds the attributes of the ops (e.g., strides, dilations, etc.).
The edges represent the connection between the nodes. The edges hold the port number for both ends.
The intermediate output from the nodes (feature maps) will be stored in the data attributes in the output port of the node (G.nodes[node_id_num]['output'][port_num]['data'] = feat_map)

An example of the contents (attributes) of a node

node id= 14
 name : StatefulPartitionedCall/sequential/target_conv_layer/Conv2D
 type : Convolution
 version : opset1
 data :
     auto_pad : valid
     dilations : 1, 1
     pads_begin : 0, 0
     pads_end : 0, 0
     strides : 1, 1
 input :
     0 :
         precision : FP32
         dims : (1, 64, 5, 5)
     1 :
         precision : FP32
         dims : (64, 64, 3, 3)
 output :
     2 :
         precision : FP32
         dims : (1, 64, 3, 3)

An example of the contents of an edge

format = (from-layer, from-port, to-layer, to-port)

edge_id= (0, 2)
   {'connection': (0, 0, 2, 0)}

Ops plugins

Operators are implemented as plugins. You can develop an Op in Python and place the file in the op_plugins directory. The inference_engine of pyOpenVINO will search the Python source files in the op_plugins directory at the start time and register them as the Ops plugin.
The file name of the Ops plugin will be treated as the Op name, so it must match the layer type attribute field in the IR XML file.
The inference engine will call the compute() function of the plugin to perform the calculation. The compute() function is the only API between the inference engine and the plugin. The inference engine will collect the required input data and pass it to the compute() function. The input data is in the form of Python dict. ({port_num:data[, port_num:data[, ...]]})
The op needs to calculate the result from the input data and return it as a Python dict. ({port_num:result[, port_num:result[, ...]]})

Kernel implementation: NumPy version and Naive version

Not all, but some Ops have dual kernel implementation, a naive implementation (easy to read), and a NumPy version implementation (a bit faster).
The NumPy version might be x10+ faster than the naive version.
The kernel type can be specified with Executable_Network.kernel_type attribute. You can specify eitgher one of 'naive' (default) or 'numpy'. Please refer to the sample program test_pyopenvino.py for the details.

END

Owner
Yasunori Shimura
Yasunori Shimura
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022