NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

Overview

NAS-HPO-Bench-II API

Overview

NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

It helps

  • a fair and low-cost evaluation/comparison of joint optimization (NAS+HPO) methods
  • a detailed analysis of the relationship between architecture/training HPs and performances

Our experimental analysis supports the importance of joint optimization. Please see our paper for details.

This repo provides API for NAS-HPO-Bench-II to make benchmarking easy. You can query our data when evaluating models in the search process of AutoML methods instead of training the models at a high cost.

If you use the dataset, please cite:

@InProceedings{hirose2021bench,
  title={{NAS-HPO-Bench-II}: A Benchmark Dataset on Joint Optimization of Convolutional Neural Network Architecture and Training Hyperparameters},
  author={Hirose, Yoichi and Yoshinari, Nozomu and Shirakawa,  Shinichi},
  booktitle={Proceedings of the 13th Asian Conference on Machine Learning},
  year={2021}
}

The code for training models is here.

Dataset Overview

The total size of the search space is 192K. The dataset includes

  • the exact data of all the models in the search space for 12 epoch training
  • the surrogate data predicting accuracies after 200 epoch training

Architecture Search Space

The overall CNN architecture is constructed by stacking cells represented as a directed acyclic graph (DAG). Each edge in the graph indicates one of the four operations.

  • 3x3 convolution (ReLU activation, 3x3 convolution with stride 1, then batch normalization)
  • 3x3 average pooling with stride 1
  • Skip, which outputs the input tensor
  • Zero, which outputs the zero tensor with the same dimension as the input

It is based on NAS-Bench-201 and the only difference is that we exclude the 1x1 convolution operation from the options.

Training HP Search Space

The combination of eight initial learning rates and six batch sizes are used.

Hyperparameter Options
Batch Size 16, 32, 64, 128, 256, 512
Learning Rate 0.003125, 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4

Installation

Run

pip install nashpobench2api

, and download the API dataset from Google Drive (93.7MB), then put the data in some directory (default: ./data). This API supports python >= 3.6 (and no external library dependencies).

If you want to run the codes in bench_algos, run pip install -r requirements.txt.

Getting Started

Create an API instance to get access to the dataset.

from nashpobench2api import NASHPOBench2API as API
api = API('/path/to/dataset')

You can get 12-epoch valid accuracy (%) and train+valid training cost (sec.) of the specified configuration.

acc, cost = api.query_by_key(
	cellcode='0|10|210',
	batch_size=256,
	lr=0.1 )

Here, cellcode represents one of the architectures in the search space. As shown in the figure below, the numbers in the cellcode mean the type of operations, and the position of the numbers shows the edge '(A) | (B)(C) | (D)(E)(F)'.

In the querying process, the api instance remembers and shows the log (what you have queried). You can reduce the log if set verbose=False when initializing api.

When the querying process has finished, you can get the test accuracy of the configuration with the best valid accuracy in the queried configurations.

results = api.get_results()

results is a dictionary with the keys below.

Key Explanation
acc_trans a transition of valid accuracies api have queried
key_trans a transition of keys (=cellcode, lr, batch_size) api have queried
best_acc_trans a transition of the best valid accuracies (%) api have queried
best_key_trans a transition of the best keys (=cellcode, lr, batch_size) api have queried
total_cost_trans a transition of train+valid costs (sec.)
final_accs 12-epoch and 200-epoch test accuracies (%) of the key with the best valid accuracy api have queried

You can reset what api have remebered, which is useful when multiple runs.

api.reset_log_data()

The examples of benchmarking codes are in the bench_algos directory. Especially, random_search.py is the simplest code and easy to understand (the core part is random_search()).

Work in Progress

  • Upload the dataset as DataFrame for visualization/analysis.
  • Upload codes for a surrogate model.
  • Upload the trained models.
Owner
yoichi hirose
yoichi hirose
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022