InterfaceGAN++: Exploring the limits of InterfaceGAN

Overview

InterfaceGAN++: Exploring the limits of InterfaceGAN

Authors: Apavou Clément & Belkada Younes

Python 3.8 pytorch 1.10.2 sklearn 0.21.2

Open In Colab

From left to right - Images generated using styleGAN and the boundaries Bald, Blond, Heavy_Makeup, Gray_Hair

This the the repository to a project related to the Introduction to Numerical Imaging (i.e, Introduction à l'Imagerie Numérique in French), given by the MVA Masters program at ENS-Paris Saclay. The project and repository is based on the work from Shen et al., and fully supports their codebase. You can refer to the original README) to reproduce their results.

Introduction

In this repository, we propose an approach, termed as InterFaceGAN++, for semantic face editing based on the work from Shen et al. Specifically, we leverage the ideas from the previous work, by applying the method for new face attributes, and also for StyleGAN3. We qualitatively explain that moving the latent vector toward the trained boundaries leads in many cases to keeping the semantic information of the generated images (by preserving its local structure) and modify the desired attribute, thus helps to demonstrate the disentangled property of the styleGANs.

🔥 Additional features

  • Supports StyleGAN2 & StyleGAN3 on the classic attributes
  • New attributes (Bald, Gray hair, Blond hair, Earings, ...) for:
    • StyleGAN
    • StyleGAN2
    • StyleGAN3
  • Supports face generation using StyleGAN3 & StyleGAN2

The list of new features can be found on our attributes detection classifier repository

🔨 Training an attribute detection classifier

We use a ViT-base model to train an attribute detection classifier, please refer to our classification code if you want to test it for new models. Once you retrieve the trained SVM from this repo, you can directly move them in this repo and use them.

Generate images using StyleGAN & StyleGAN2 & StyleGAN3

We did not changed anything to the structure of the old repository, please refer to the previous README. For StyleGAN

🎥 Get the pretrained StyleGAN

We use the styleGAN trained on ffhq for our experiments, if you want to reproduce them, run:

wget -P interfacegan/models/pretrain https://www.dropbox.com/s/qyv37eaobnow7fu/stylegan_ffhq.pth

🎥 Get the pretrained StyleGAN2

We use the styleGAN2 trained on ffhq for our experiments, if you want to reproduce them, run:

wget -P models/pretrain https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-1024x1024.pkl 

🎥 Get the pretrained StyleGAN3

We use the styleGAN3 trained on ffhq for our experiments, if you want to reproduce them, run:

wget -P models/pretrain https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhq-1024x1024.pkl 

The pretrained model should be copied at models/pretrain. If not, move the pretrained model file at this directory.

🎨 Run the generation script

If you want to generate 10 images using styleGAN3 downloaded before, run:

python generate_data.py -m stylegan3_ffhq -o output_stylegan3 -n 10

The arguments are exactly the same as the arguments from the original repository, the code supports the flag -m stylegan3_ffhq for styleGAN3 and -m stylegan3_ffhq for styleGAN2.

✏️ Edit generated images

You can edit the generated images using our trained boundaries! Depending on the generator you want to use, make sure that you have downloaded the right model and put them into models/pretrain.

Examples

Please refer to our interactive google colab notebook to play with our models by clicking the following badge:

Open In Colab

StyleGAN

Example of generated images using StyleGAN and moving the images towards the direction of the attribute grey hair:

original images generated with StyleGAN

grey hair version of the images generated with StyleGAN

StyleGAN2

Example of generated images using StyleGAN2 and moving the images towards the opposite direction of the attribute young:

original images generated with StyleGAN2

non young version of the images generated with StyleGAN2

StyleGAN3

Example of generated images using StyleGAN3 and moving the images towards the attribute beard:

Owner
Younes Belkada
MSc Student in Mathematics - Machine Learning - Perception | M2 MVA @ ENS Paris-Saclay
Younes Belkada
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
MARE - Multi-Attribute Relation Extraction

MARE - Multi-Attribute Relation Extraction Repository for the paper submission: #TODO: insert link, when available Environment Tested with Ubuntu 18.0

0 May 11, 2021
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023