Code for generating a single image pretraining dataset

Overview

Single Image Pretraining of Visual Representations

As shown in the paper

A critical analysis of self-supervision, or what we can learn from a single image, Asano et al. ICLR 2020

Example images from our dataset

Why?

Self-supervised representation learning has made enormous strides in recent years. In this paper we show that a large part why self-supervised learning works are the augmentations. We show this by pretraining various SSL methods on a dataset generated solely from augmenting a single source image and find that various methods still pretrain quite well and even yield representations as strong as using the whole dataset for the early layers of networks.

Abstract

We look critically at popular self-supervision techniques for learning deep convolutional neural networks without manual labels. We show that three different and representative methods, BiGAN, RotNet and DeepCluster, can learn the first few layers of a convolutional network from a single image as well as using millions of images and manual labels, provided that strong data augmentation is used. However, for deeper layers the gap with manual supervision cannot be closed even if millions of unlabelled images are used for training. We conclude that: (1) the weights of the early layers of deep networks contain limited information about the statistics of natural images, that (2) such low-level statistics can be learned through self-supervision just as well as through strong supervision, and that (3) the low-level statistics can be captured via synthetic transformations instead of using a large image dataset.

Usage

Here we provide the code for generating a dataset from using just a single source image. Since the publication, I have slightly modified the dataset generation script to make it easier to use. Dependencies: torch, torchvision, joblib, PIL, numpy, any recent version should do.

Run like this:

python make_dataset_single.py --imgpath images/ameyoko.jpg --targetpath ./out/ameyoko_dataset

Here is the full description of the usage:

usage: make_dataset_single.py [-h] [--img_size IMG_SIZE]
                              [--batch_size BATCH_SIZE] [--num_imgs NUM_IMGS]
                              [--threads THREADS] [--vflip] [--deg DEG]
                              [--shear SHEAR] [--cropfirst]
                              [--initcrop INITCROP] [--scale SCALE SCALE]
                              [--randinterp] [--imgpath IMGPATH] [--debug]
                              [--targetpath TARGETPATH]

Single Image Pretraining, Asano et al. 2020

optional arguments:
  -h, --help            show this help message and exit
  --img_size IMG_SIZE
  --batch_size BATCH_SIZE
  --num_imgs NUM_IMGS   number of images to be generated
  --threads THREADS     how many CPU threads to use for generation
  --vflip               use vflip?
  --deg DEG             max rot angle
  --shear SHEAR         max shear angle
  --cropfirst           usage of initial crop to not focus too much on center
  --initcrop INITCROP   initial crop size relative to image
  --scale SCALE SCALE   data augmentation inverse scale
  --randinterp          For RR crops: use random interpolation method or just bicubic?
  --imgpath IMGPATH
  --debug
  --targetpath TARGETPATH

Reference

If you find this code/idea useful, please consider citing our paper:

@inproceedings{asano2020a,
title={A critical analysis of self-supervision, or what we can learn from a single image},
author={Asano, Yuki M. and Rupprecht, Christian and Vedaldi, Andrea},
booktitle={International Conference on Learning Representations (ICLR)},
year={2020},
}
Owner
Yuki M. Asano
I'm a PhD student in the Visual Geometry Group at the University of Oxford. I work with @chrirupp and @vedaldi.
Yuki M. Asano
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023