Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Overview

Hierarchical Metadata-Aware Document Categorization under Weak Supervision

This project provides a weakly supervised framework for hierarchical metadata-aware document categorization.

Links

Installation

For training, a GPU is strongly recommended.

Keras

The code is based on Keras. You can find installation instructions here.

Dependency

The code is written in Python 3.6. The dependencies are summarized in the file requirements.txt. You can install them like this:

pip3 install -r requirements.txt

Quick Start

To reproduce the results in our paper, you need to first download the datasets. Three datasets are used in our paper: GitHub, ArXiv, and Amazon. Once you unzip the downloaded file (i.e., data.zip), you can see three folders related to these three datasets, respectively.

Dataset #Documents #Layers #Classes (including ROOT) #Leaves Sample Classes
GitHub 1,596 2 18 14 Computer Vision (Layer-1), Image Generation (Layer-2)
ArXiv 26,400 2 94 88 cs (Layer-1), cs.AI (Layer-2)
Amazon 147,000 2 166 147 Automotive (Layer-1), Car Care (Layer-2)

You need to put these 3 folders under the main folder ./. Then the following running script can be used to run the model.

./test.sh

Level-1/Level-2/Overall Micro-F1/Macro-F1 scores will be shown in the last several lines of the output. The classification result can be found under your dataset folder. For example, if you are using the GitHub dataset, the output will be ./github/out.txt.

Data

In each of the three folders (i.e., github/, arxiv/, and amazon/), there is a json file, where each line represents one document with text and metadata information.

For GitHub, the json format is

{
  "id": "Natsu6767/DCGAN-PyTorch",  
  "user": [
    "Natsu6767"
  ],
  "text": "pytorch implementation of dcgan trained on the celeba dataset deep convolutional gan ...",
  "tags": [
    "pytorch",
    "dcgan",
    "gan",
    "implementation",
    "deeplearning",
    "computer-vision",
    "generative-model"
  ],
  "labels": [
    "$Computer-Vision",
    "$Image-Generation"
  ]
}

The "user" and "tags" fields are metadata.

For ArXiv, the json format is

{
  "id": "1001.0063",
  "authors": [
    "Alessandro Epasto",
    "Enrico Nardelli"
  ],
  "text": "on a model for integrated information in this paper we give a thorough presentation ...",
  "labels": [
    "cs",
    "cs.AI"
  ]
}

The "authors" field is metadata.

For Amazon, the json format is

{
  "user": [
    "A39IXH6I0WT6TK"
  ],
  "product": [
    "B004DLPXAO"
  ],
  "text": "works really great only had a problem when it was updated but they fixed it right away ...",
  "labels": [
    "Apps-for-Android",
    "Books-&-Comics"
  ]
}

The "user" and "product" fields are metadata.

NOTE 1: If you would like to run our code on your own dataset, when you prepare this json file, make sure that: (1) You list the labels in the top-down order. For example, if the label path of your repository is ROOT-A-B-C, then the "labels" field should be ["A", "B", "C"]. (2) For each document, its metadata field is always represented by a list. For example, the "user" field should be ["A39IXH6I0WT6TK"] instead of "A39IXH6I0WT6TK".

Running on New Datasets

In the Quick Start section, we include a pretrained embedding file in the downloaded folders. If you would like to re-train the embedding (or you have a new dataset), please follow the steps below.

  1. Create a directory named ${dataset} under the main folder (e.g., ./github).

  2. Prepare four files:
    (1) ./${dataset}/label_hier.txt indicating the parent children relationships between classes. The first class of each line is the parent class, followed by all its children classes. Whitespace is used as the delimiter. The root class must be named as ROOT. Make sure your class names do not contain whitespace.
    (2) ./${dataset}/doc_id.txt containing labeled document ids for each class. Each line begins with the class name, and then document ids in the corpus (starting from 0) of the corresponding class separated by whitespace.
    (3) ./${dataset}/${json-name}.json. You can refer to the provided json format above. Make sure it has two fields "text" and "labels". You can add your own metadata fields in the json.
    (4) ./${dataset}/meta_dict.json indicating the names of your metadata fields. For example, for GitHub, it should be

{"metadata": ["user", "tags"]}

For ArXiv, it should be

{"metadata": ["authors"]}
  1. Install the dependencies GSL and Eigen. For Eigen, we already provide a zip file JointEmbedding/eigen-3.3.3.zip. You can directly unzip it in JointEmbedding/. For GSL, you can download it here.

  2. ./prep_emb.sh. Make sure you change the dataset/json names. The embedding file will be saved to ./${dataset}/embedding_sph.

After that, you can train the classifier as mentioned in Quick Start (i.e., ./test.sh). Please always refer to the example datasets when adapting the code for a new dataset.

Citation

If you find the implementation useful, please cite the following paper:

@inproceedings{zhang2021hierarchical,
  title={Hierarchical Metadata-Aware Document Categorization under Weak Supervision},
  author={Zhang, Yu and Chen, Xiusi and Meng, Yu and Han, Jiawei},
  booktitle={WSDM'21},
  pages={770--778},
  year={2021},
  organization={ACM}
}
Owner
Yu Zhang
CS Ph.D. student at UIUC; Data Mining
Yu Zhang
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023