Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Overview

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

This repository contains a TensorFlow implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" by Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh (accepted as ORAL presentation in ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) 2019).

Paper link: https://arxiv.org/pdf/1905.07953.pdf

Requirements

1) Download metis-5.1.0.tar.gz from http://glaros.dtc.umn.edu/gkhome/metis/metis/download and unpack it
2) cd metis-5.1.0
3) make config shared=1 prefix=~/.local/
4) make install
5) export METIS_DLL=~/.local/lib/libmetis.so
  • install required Python packages
 pip install -r requirements.txt

quick test to see whether you install metis correctly:

>>> import networkx as nx
>>> import metis
>>> G = metis.example_networkx()
>>> (edgecuts, parts) = metis.part_graph(G, 3)
  • We follow GraphSAGE's input format and its code for pre-processing the data.

  • This repository includes scripts for reproducing our experimental results on PPI and Reddit. Both datasets can be downloaded from this website.

Run Experiments.

  • After metis and networkx are set up, and datasets are ready, we can try the scripts.

  • We assume data files are stored under './data/{data-name}/' directory.

    For example, the path of PPI data files should be: data/ppi/ppi-{G.json, feats.npy, class_map.json, id_map.json}

  • For PPI data, you may run the following scripts to reproduce results in our paper

./run_ppi.sh

For reference, with a V100 GPU, running time per epoch on PPI is about 1 second.

The test F1 score will be around 0.9935 depending on different initialization.

  • For reddit data (need change the data_prefix path in .sh to point to the data):
./run_reddit.sh

In the experiment section of the paper, we show how to generate Amazon2M dataset. There is an external implementation for generating Amazon2M data following the same procedure in the paper (code and data).

Below shows a table of state-of-the-art performance from recent papers.

PPI Reddit
FastGCN (code) N/A 93.7
GraphSAGE (code) 61.2 95.4
VR-GCN (code) 97.8 96.3
GAT (code) 97.3 N/A
GaAN 98.71 96.36
GeniePath 98.5 N/A
Cluster-GCN 99.36 96.60

If you use any of the materials, please cite the following paper.

@inproceedings{clustergcn,
  title = {Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks},
  author = { Wei-Lin Chiang and Xuanqing Liu and Si Si and Yang Li and Samy Bengio and Cho-Jui Hsieh},
  booktitle = {ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)},
  year = {2019},
  url = {https://arxiv.org/pdf/1905.07953.pdf},
}

Owner
Jingwei Zheng
Jingwei Zheng
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022