Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Overview

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv)

This is a Pytorch implementation of our technical report.

Compare

Comparison between the proposed LV-ViT and other recent works based on transformers. Note that we only show models whose model sizes are under 100M.

Training Pipeline

Pipeline

Our codes are based on the pytorch-image-models by Ross Wightman.

LV-ViT Models

Model layer dim Image resolution Param Top 1 Download
LV-ViT-S 16 384 224 26.15M 83.3 link
LV-ViT-S 16 384 384 26.30M 84.4 link
LV-ViT-M 20 512 224 55.83M 84.0 link
LV-ViT-M 20 512 384 56.03M 85.4 link
LV-ViT-L 24 768 448 150.47M 86.2 link

Requirements

torch>=1.4.0 torchvision>=0.5.0 pyyaml timm==0.4.5

data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Validation

Replace DATA_DIR with your imagenet validation set path and MODEL_DIR with the checkpoint path

CUDA_VISIBLE_DEVICES=0 bash eval.sh /path/to/imagenet/val /path/to/checkpoint

Label data

We provide NFNet-F6 generated dense label map here. As NFNet-F6 are based on pure ImageNet data, no extra training data is involved.

Training

Coming soon

Reference

If you use this repo or find it useful, please consider citing:

@misc{jiang2021token,
      title={Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet}, 
      author={Zihang Jiang and Qibin Hou and Li Yuan and Daquan Zhou and Xiaojie Jin and Anran Wang and Jiashi Feng},
      year={2021},
      eprint={2104.10858},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Related projects

T2T-ViT, Re-labeling ImageNet.

Comments
  • error: download the pretrained model but couldn't be unzipped

    error: download the pretrained model but couldn't be unzipped

    tar -xvf lvvit_s-26M-384-84-4.pth.tar tar: This does not look like a tar archive tar: Skipping to next header tar: Exiting with failure status due to previous errors

    opened by Williamlizl 10
  • The accuracy of the validation set is 0,and the loss is always around 13

    The accuracy of the validation set is 0,and the loss is always around 13

    Hello! I use ILSVRC2012_img_train and ILSVRC2012_img_val, and use the provided label_top5_train_nfnet from Google Drive. I train lv-vit-s with batch_size 64 without apex for one epoch. Thanks for your advice.

    opened by yifanQi98 7
  • Pretrained weights for LV-ViT-T

    Pretrained weights for LV-ViT-T

    Hi,

    Thanks for sharing your work. Could you also provide the pre-trained weights for the LV-ViT-T model variant, the one that achieves 79.1% top1-acc. as mentioned in Table 1 of your paper?

    All the best, Marc

    opened by marc345 5
  • train error: AttributeError: 'tuple' object has no attribute 'log_softmax'

    train error: AttributeError: 'tuple' object has no attribute 'log_softmax'

    Hi, thanks for you great work. When I train script, some error occurs: AttributeError: 'tuple' object has no attribute 'log_softmax'

    with amp_autocast():   
                output = model(input)  
                loss = loss_fn(output, target)  # error occurs
    
    

    and loss function is train_loss_fn = LabelSmoothingCrossEntropy(smoothing=0.0).cuda()

    by the way: Could you please tell me why we need to specify smoothing=0.0?

    opened by lxy5513 5
  • RuntimeError: CUDA error: device-side assert triggered

    RuntimeError: CUDA error: device-side assert triggered

    I am a green hand of DL. When I run the code of volo with tlt in a single or multi GPU, I get an error as follows: /pytorch/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:312: operator(): block: [0,0,0], thread: [25,0,0] Assertion idx_dim >= 0 && idx_dim < index_size && "index out of bounds" failed. Traceback (most recent call last): File "main.py", line 949, in main() File "main.py", line 664, in main optimizers=optimizers) File "main.py", line 773, in train_one_epoch label_size=args.token_label_size) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 90, in mixup_target y1 = get_labelmaps_with_coords(target, num_classes, on_value=on_value, off_value=off_value, device=device, label_size=label_size) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 64, in get_labelmaps_with_coords num_classes=num_classes,device=device) File "/opt/conda/lib/python3.6/site-packages/tlt/data/mixup.py", line 16, in get_featuremaps _label_topk[1][:, :, :].long(), RuntimeError: CUDA error: device-side assert triggered.

    I can't fix this problem right now.

    opened by JIAOJIAYUASD 4
  • Generating label for custom dataset

    Generating label for custom dataset

    Hello,

    Thank you for sharing your work. I am currently trying to generate token label to a custom dataset for model lvvit_s, but I keep getting the loss close to 7 and the Accuracy 0 (not pre-trained and using 1 GPU in Google Colab). I also tried using the pre-trained model with --transfer but got 0 in both Loss and Acc . What option should I use for a custom dataset? image

    opened by AleMaiaF 2
  • generate_label.py unable to find model lvvit_s

    generate_label.py unable to find model lvvit_s

    Hi,

    When I tried to run the label generation script for the model lvvit_s it returned an error "RuntimeError: Unknown model".

    Solution: It worked when I added the line "import tlt.models" in the file generate_label.py.

    opened by AleMaiaF 2
  • Can Token labeling reach higher than annotator model?

    Can Token labeling reach higher than annotator model?

    Greetings,

    Thank you for this incredible research.

    I would like to know if it is possible to use Token Labeling to achieve scores higher than that of the annotator model, I believe this was the case with VOLO D5 model where it achieved higher score than NFNet, model used for annotation.

    opened by ErenBalatkan 1
  • label_map does not do the same augmentation (random crop) as the input image

    label_map does not do the same augmentation (random crop) as the input image

    Hi Thanks so much for the nice work! I am curious if you could share the insight on processing of the label_map. If I understand it correctly, after we load image and the corresponding, we shall do the same cropping/ flip/ resize, but in https://github.com/zihangJiang/TokenLabeling/blob/aa438eff9b9fc2daa8c8b4cc6bfaa6e3721f995e/tlt/data/label_transforms_factory.py#L58-L73 Seems only image was cropped, but the label map does not do the same cropping, which make the label map not match with the image?

    Shall we do

            return torchvision_F.resized_crop(
                    img, i, j, h, w, self.size, interpolation
            ), torchvision_F.resized_crop(
                    label_map, i / ratio, j / ratio, h / ratio, w / ratio, self.size, interpolation
            )
    

    Thanks

    opened by haooooooqi 1
  • Python3.6, ok; Python3.8, error

    Python3.6, ok; Python3.8, error

    Test: [ 0/1] Time: 11.293 (11.293) Loss: 0.7043 (0.7043) [email protected]: 42.1875 (42.1875) [email protected]: 100.0000 (100.0000) Test: [ 1/1] Time: 0.108 (5.701) Loss: 0.5847 (0.6689) [email protected]: 89.8148 (56.3187) [email protected]: 100.0000 (100.0000) free(): invalid pointer free(): invalid pointer Traceback (most recent call last): File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launch.py", line 303, in <module> main() File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launch.py", line 294, in main raise subprocess.CalledProcessError(returncode=process.returncode, subprocess.CalledProcessError: Command '['/opt/conda/bin/python3.8', '-u', 'main.py', '--local_rank=1', './dataset/c/c', '--model', 'lvvit_s', '-b', '128', '--apex-amp', '--img-size', '224', '--drop-path', '0.1', '--token-label', '--token-label-size', '14', '--dense-weight', '0.0', '--num-classes', '2', '--finetune', './pretrained/lvvit_s-26M-384-84-4.pth.tar']' died with <Signals.SIGABRT: 6>. [email protected]:/puxin_libochao/TokenLabeling# CUDA_VISIBLE_DEVICES=0,1 bash ./distributed_train.sh 2 ./dataset/c/c --model lvvit_s -b 128 --apex-amp --img-size 224 --drop-path 0.1 --token-label --token-label-size 14 --dense-weight 0.0 --num-classes 2 --finetune ./pretrained/lvvit_s-26M-384-84-4.pth.tar

    opened by Williamlizl 1
  • A Bag of Training Techniques for ViT

    A Bag of Training Techniques for ViT

    Hi, thanks for your wonderful work. I have a question that whether training techniques mentioned in the LV-Vit can be used in other downstream task like object detection? In your paper, I see that many of this techniques are used in ImageNet. Thanks!

    opened by qdd1234 1
  • how to apply token labeling to CNN ?

    how to apply token labeling to CNN ?

    Hello ~ I'm interested in your token labeling technique, So I want to apply this technique in CNN based model because ViT is very heavy to train.

    can I get the your code with CNN token labeling? if you're not give me some detail for implementing

    thank you.

    opened by HoJ00n2 0
  • Model settings for Cifar10

    Model settings for Cifar10

    I am interested if there is any LV-ViT- model setup you have tested for Cifar10. I would like to know the proper setup of all blocks in none pretrained weights settings.

    opened by Aminullah6264 0
Owner
蒋子航
Now a Ph.D. student supervised by Prof. Feng Jiashi in ECE, NUS.
蒋子航
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021