U-Net Brain Tumor Segmentation

Overview

U-Net Brain Tumor Segmentation

🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is welcome), you can use TensorFlow dataset API instead.

This repo show you how to train a U-Net for brain tumor segmentation. By default, you need to download the training set of BRATS 2017 dataset, which have 210 HGG and 75 LGG volumes, and put the data folder along with all scripts.

data
  -- Brats17TrainingData
  -- train_dev_all
model.py
train.py
...

About the data

Note that according to the license, user have to apply the dataset from BRAST, please do NOT contact me for the dataset. Many thanks.


Fig 1: Brain Image
  • Each volume have 4 scanning images: FLAIR、T1、T1c and T2.
  • Each volume have 4 segmentation labels:
Label 0: background
Label 1: necrotic and non-enhancing tumor
Label 2: edema 
Label 4: enhancing tumor

The prepare_data_with_valid.py split the training set into 2 folds for training and validating. By default, it will use only half of the data for the sake of training speed, if you want to use all data, just change DATA_SIZE = 'half' to all.

About the method


Fig 2: Data augmentation

Start training

We train HGG and LGG together, as one network only have one task, set the task to all, necrotic, edema or enhance, "all" means learn to segment all tumors.

python train.py --task=all

Note that, if the loss stick on 1 at the beginning, it means the network doesn't converge to near-perfect accuracy, please try restart it.

Citation

If you find this project useful, we would be grateful if you cite the TensorLayer paper:

@article{tensorlayer2017,
author = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike},
journal = {ACM Multimedia},
title = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}},
url = {http://tensorlayer.org},
year = {2017}
}
Comments
  • TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    Lossy conversion from float64 to uint8. Range [-0.18539370596408844, 2.158207416534424]. Convert image to uint8 prior to saving to suppress this warning. Traceback (most recent call last): File "train.py", line 250, in main(args.task) File "train.py", line 106, in main X[:,:,2,np.newaxis], X[:,:,3,np.newaxis], y])#[:,:,np.newaxis]]) File "train.py", line 26, in distort_imgs fill_mode='constant') TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    opened by shenzeqi 8
  • MemoryError

    MemoryError

    @zsdonghao I am getting the memory error like this, What is the solution for this error?

    Traceback (most recent call last): File "train.py", line 279, in main(args.task) File "train.py", line 78, in main y_test = (y_test > 0).astype(int) MemoryError

    opened by PoonamZ 4
  • Error: Your CPU supports instructions that TensorFlow binary not compiled to use: AVX2

    Error: Your CPU supports instructions that TensorFlow binary not compiled to use: AVX2

    I am running run.py but gives error:

    (base) G:>cd BraTS_2018_U-Net-master

    (base) G:\BraTS_2018_U-Net-master>run.py [*] creates checkpoint ... [*] creates samples/all ... finished Brats18_2013_24_1 2019-06-15 22:05:45.959220: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 Traceback (most recent call last): File "G:\BraTS_2018_U-Net-master\run.py", line 154, in

    File "G:\BraTS_2018_U-Net-master\run.py", line 117, in main t_seg = tf.placeholder('float32', [1, nw, nh, 1], name='target_segment') NameError: name 'model' is not defined

    opened by sapnii2 2
  • TypeError: __init__() got an unexpected keyword argument 'out_size'

    TypeError: __init__() got an unexpected keyword argument 'out_size'

    • After conv: Tensor("u_net/conv8/leaky_relu:0", shape=(5, 1, 1, 512), dtype=float32, device=/device:CPU:0) Traceback (most re screenshot from 2019-02-19 18-02-42 cent call last): File "train.py", line 250, in main(args.task) File "train.py", line 121, in main net = model.u_net_bn(t_image, is_train=True, reuse=False, n_out=1) File "/home/achi/project/u-net-brain-tumor-master/model.py", line 179, in u_net_bn padding=pad, act=None, batch_size=batch_size, W_init=w_init, b_init=b_init, name='deconv7') File "/home/achi/anaconda3/lib/python3.6/site-packages/tensorlayer/decorators/deprecated_alias.py", line 24, in wrapper return f(*args, **kwargs) TypeError: init() got an unexpected keyword argument 'out_size'
    opened by achintacsgit 1
  • Pre-trained model

    Pre-trained model

    I was wondering if you would share a pre-trained model. I would need to run inference-only, and training the model is taking longer than expected.

    Thanks for sharing this project!

    opened by luisremis 1
  • TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    [TL] [!] checkpoint exists ... [TL] [!] samples/all exists ... Lossy conversion from float64 to uint8. Range [-0.19753389060497284, 2.826017379760742]. Convert image to uint8 prior to saving to suppress this warning.

    TypeError Traceback (most recent call last) in 239 tl.files.save_npz(net.all_params, name=save_dir+'/u_net_{}.npz'.format(task), sess=sess) 240 --> 241 main(task='all') 242 243 ##if name == "main":

    in main(task) 103 for i in range(10): 104 x_flair, x_t1, x_t1ce, x_t2, label = distort_imgs([X[:,:,0,np.newaxis], X[:,:,1,np.newaxis], --> 105 X[:,:,2,np.newaxis], X[:,:,3,np.newaxis], y])#[:,:,np.newaxis]]) 106 # print(x_flair.shape, x_t1.shape, x_t1ce.shape, x_t2.shape, label.shape) # (240, 240, 1) (240, 240, 1) (240, 240, 1) (240, 240, 1) (240, 240, 1) 107 X_dis = np.concatenate((x_flair, x_t1, x_t1ce, x_t2), axis=2)

    in distort_imgs(data) 23 x1, x2, x3, x4, y = tl.prepro.zoom_multi([x1, x2, x3, x4, y], 24 zoom_range=[0.9, 1.1], is_random=True, ---> 25 fill_mode='constant') 26 return x1, x2, x3, x4, y 27

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    opened by BTapan 0
  • TensorFlow Implemetation

    TensorFlow Implemetation

    Do you have implementation of brain tumor segmentation code directly in tensorflow without using tensorlayer? If yes, can you share the same? Thank you.

    opened by rupalkapdi 0
  • What is checkpoint?

    What is checkpoint?

    When I run "python train.py" and then have a checkpoint folder is created. What function of checkpoint folder? Thank you

    And I also have another question. When we had the picture, as follows. Is that the end result? I mean we can submit them to the Brast_2018 challenge? image

    Thank you very much.

    opened by tphankr 0
  • Making sense

    Making sense

    Novice here, i noticed the shape of the X_train arrays ended with 4. (240,240,4) Does each of those channel represent the type of the scan ( T1, t2, flair, t1ce ) ?

    opened by guido-niku 1
  • Classification Layer - Activation & Shape?

    Classification Layer - Activation & Shape?

    Hi!

    I went through this repository after reading your paper. Architecture on page 6, shows the final classification layer to produce feature maps of shape (240, 240, 2) which may indicate the use of a Softmax activation (not specified in the paper). On the contrary, model used in code has a classification layer of shape (240, 240, 1) using Sigmoid activation.

    Kindly clarify this ambiguity.

    opened by stalhabukhari 2
Releases(0.1)
Owner
Hao
Assistant Professor @ Peking University
Hao
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022