当前位置:网站首页>Latex common formula query
Latex common formula query
2022-04-21 15:29:00 【Nanyu Sheng Xiao】
Dollar symbol typesetting
a + b = b + a a+b=b+a a+b=b+a
$a+b=b+a$
Superscript
3 x 2 − x + 2 = 0 3x^2-x+2=0 3x2−x+2=0
$3x^2-x+2=0\$
3 x 20 − x + 2 = 0 3x^{20}-x+2=0 3x20−x+2=0
$3x^{20}-x+2=0$
3 x 3 x 20 − x + 2 = 0 − x + 2 = 0 3x^{3x^{20} - x + 2 = 0} - x + 2 = 0 3x3x20−x+2=0−x+2=0
$3x^{3x^{20} - x + 2 = 0} - x + 2 = 0$
Subscript
a 0 , a 1 , a 2 a0,a1,a2 a0,a1,a2
$a0,a1,a2$
a 0 , a 1 , a 2 . . . , a 100 a_0,a_1,a_2...,a_{100} a0,a1,a2...,a100
$a_0,a_1,a_2...,a_{100}$
trivial
| ∘ \circ ∘ | $\circ$ |
| a + b \boxed{a+b} a+b | $\boxed{a+b}$ |
| Z \mathbb{Z} Z | $\mathbb{Z}$ |
The Greek letter
| α \alpha α | $alpha$ |
Δ \Delta Δ | $\Delta$ |
| β \beta β | $\beta$ |
Θ \Theta Θ | $\Theta$ |
| γ \gamma γ | $\gamma$ |
Γ \Gamma Γ | $\Gamma$ |
| ϵ \epsilon ϵ | $\epsilon$ |
||
| π \pi π | $\pi$ |
Π \Pi Π | $\Pi$ |
| ω \omega ω | $\omega$ |
Ω \Omega Ω | $\Omega$ |
α 3 + β 2 + γ = 0 \alpha^3 + \beta^2 + \gamma = 0 α3+β2+γ=0
$\alpha^3 + \beta^2 + \gamma = 0$
Mathematical functions
| log \log log | $\log$ |
| sin \sin sin | $\sin$ |
| cos \cos cos | $\cos$ |
| arcsin \arcsin arcsin | $\arcsin$ |
| arccos \arccos arccos | $\arccos$ |
| ln \ln ln | $\ln$ |
| 2 \sqrt2 2 | $\sqrt2$ |
| 2 + 2 \sqrt{2 + \sqrt{2}} 2+2 | $\sqrt{2 + \sqrt{2}}$ |
| x 4 \sqrt[4]{x} 4x | $\sqrt[4]{x}$ |
y = log 2 x y = \log_2 x y=log2x
$y = \log_2 x$
s i n 2 x + cos 2 x = 1 sin^2 x + \cos^2 x = 1 sin2x+cos2x=1
$sin^2 x + \cos^2 x = 1$
Common binary operators
| ∪ \cup ∪ | $\cup$ |
| ∩ \cap ∩ | $\cap$ |
| ∨ \vee ∨ | $\vee$ |
| ∧ \wedge ∧ | $\wedge$ |
| ⊕ \oplus ⊕ | $\oplus$ |
| ± \pm ± | $\pm$ |
| ∓ \mp ∓ | $\mp$ |
Commonly used binary relations
| ≤ \le ≤ | $\le$ |
| ≥ \ge ≥ | $\ge$ |
| ≪ \ll ≪ | $\ll$ |
| ≡ \equiv ≡ | $\equiv$ |
| ⊂ \subset ⊂ | $\subset$ |
| ⊃ \supset ⊃ | $\supset$ |
| ⊆ \subseteq ⊆ | $\sebseteq$ |
| ⊇ \supseteq ⊇ | $\sepseteq$ |
| ≈ \approx ≈ | $\approx$ |
| ∈ \in ∈ | $\in$ |
| ∋ \ni ∋ | $\ni$ |
| ∉ \notin ∈/ | $\notin$ |
Upper case number set
Z \mathbb{Z} Z
$\mathbb{Z}$
Universiade operator
| ∑ \sum ∑ | $\sum$ |
| ∫ \int ∫ | $\int$ |
| ∮ \oint ∮ | $\oint$ |
| ⨂ \bigotimes ⨂ | $\bigotimes$ |
arrow
| \nearrow | $\nearrow$ |
| \swarrow | $\swarrow$ |
| \searrow | $\searrow$ |
| \nwarrow | $\nwarrow$ |
Fraction
3 / 4 3/4 3/4
$3/4$
3 4 \frac{3}{4} 43
$\frac{3}{4}$
Multiplication and division
1 × 2 = 2 1 \times 2 = 2 1×2=2
$1 \times 2 = 2$
9 ÷ 3 = 3 9 \div 3 = 3 9÷3=3
$9 \div 3 = 3$
Formula size
| csc α = 1 sin α \csc\alpha = \scriptstyle\frac{1}{\sin\alpha} cscα=sinα1 | $\csc\alpha = \scriptstyle\frac{1}{\sin\alpha}$ |
| csc α = 1 sin α \csc\alpha = \frac{1}{\sin\alpha} cscα=sinα1 | $\csc\alpha = \frac{1}{\sin\alpha}$ |
| csc α = 1 sin α \csc\alpha = \textstyle\frac{1}{\sin\alpha} cscα=sinα1 | $\csc\alpha = \textstyle\frac{1}{\sin\alpha}$ |
| csc α = 1 sin α \csc\alpha = \displaystyle\frac{1}{\sin\alpha} cscα=sinα1 | $\csc\alpha = \displaystyle\frac{1}{\sin\alpha}$ |
Curly braces
F H L L C = { F L 0 < S L F L ∗ S L ≤ 0 < S M F R ∗ S M ≤ 0 < S R F R S R ≤ 0 F^{HLLC}=\left\{ \begin{array}{rcl} F_L & & {0 < S_L}\\ F^*_L & & {S_L \leq 0 < S_M}\\ F^*_R & & {S_M \leq 0 < S_R}\\ F_R & & {S_R \leq 0} \end{array} \right. FHLLC=⎩⎪⎪⎨⎪⎪⎧FLFL∗FR∗FR0<SLSL≤0<SMSM≤0<SRSR≤0
$$ F^{HLLC}=\left\{
\begin{array}{rcl}
F_L & & {0 < S_L}\\
F^*_L & & {S_L \leq 0 < S_M}\\
F^*_R & & {S_M \leq 0 < S_R}\\
F_R & & {S_R \leq 0}
\end{array} \right. $$
All kinds of brackets
0 1 1 0 ( 0 − i i 0 ) [ 0 − 1 1 0 ] { 1 0 0 − 1 } ∣ a b c d ∣ ∥ i 0 0 − i ∥ \begin{gathered} \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} \end{gathered} 0110(0i−i0)[01−10]{ 100−1}∣∣∣∣acbd∣∣∣∣∥∥∥∥i00−i∥∥∥∥
$$
\begin{gathered}
\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}
\quad
\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\quad
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\quad
\begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix}
\quad
\begin{vmatrix} a & b \\ c & d \end{vmatrix}
\quad
\begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix}
\end{gathered}
$$
版权声明
本文为[Nanyu Sheng Xiao]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204211526205969.html
边栏推荐
猜你喜欢

AcWing 1788. Why do cows cross the road (simulation)

什么是电子邮件的格式?企业邮箱地址是什么?

Best practices | under the epidemic, learn how eolink can help telecommuting!

使用konvajs三步实现一个小球游戏

客户端邮件同步到webmail如何操作,电子邮件地址怎么注册?

终极套娃 2.0|云原生 PaaS 平台的可观测性实践分享

JDBC and database connection pool

无常损失简单解释

Hanoi tower game and recursion

别紧张,就是聊聊软考
随机推荐
Plug in development practice of a simple annotation Library
[binary search - simple] 69 Square root of X
Spark / Scala - read rcfile & orcfile
Hanoi tower game and recursion
IT服务管理框架要怎么落地?看这篇就够了
商家该如何建立私域流量?
107页企业数字化转型规划设计
Smart public security QR code positioning alarm system development of mobile police app
92页集团信息化规划方案企业应用集成解决方案
Reading breaks ten thousand "volumes": National Reading insight 2022
What mailbox do foreign trade companies usually use and how to send e-mail in groups?
How should the IT service management framework be implemented? That's enough
[advanced C language] user defined type: struct, bit segment, enumeration, union
Installation and uninstallation of MySQL
Oracle official announcement: Tencent JDK 18 ranks first in China!
2的0次方为什么等于1?
用户交互、格式化输出、基本运算符
[Unity] error CS0433: The type ‘Task‘ exists in both Unity. Tasks,....
JUC并发学习笔记
终极套娃 2.0|云原生 PaaS 平台的可观测性实践分享