当前位置:网站首页>21 Days of Deep Learning - Convolutional Neural Networks (CNN): Clothing Image Classification (Day 3)
21 Days of Deep Learning - Convolutional Neural Networks (CNN): Clothing Image Classification (Day 3)
2022-08-05 09:14:00 【Qingyuan Warm Song】
Table of Contents
1.1 Image input form of convolutional neural network
1.3 class_names[np.argmax(pre[1])]
First, new learning
1.1 Image input form of convolutional neural network
The input of the convolutional neural network (CNN) is in the form of a tensor (image_height, image_width,
color_channels), which contains the image height, width and color information.There is no need to enter batch size.color_channels is (R, G, B) corresponding to the three color channels of RGB respectively.In this example, our CNN input, a picture from the fashion_mnist dataset, is of shape (28, 28, 1) i.e. a grayscale image.We need to assign the shape to the parameter input_shape when declaring the first layer.
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #convolution layer 1, convolution kernel 3*3layers.MaxPooling2D((2, 2)), #pooling layer 1, 2*2 samplinglayers.Conv2D(64, (3, 3), activation='relu'), #Convolution layer 2, convolution kernel 3*3layers.MaxPooling2D((2, 2)), #pooling layer 2, 2*2 samplinglayers.Conv2D(64, (3, 3), activation='relu'), #Convolution layer 3, convolution kernel 3*3layers.Flatten(), #Flatten layer, connecting the convolutional layer and the fully connected layerlayers.Dense(64, activation='relu'), #Full connection layer, further feature extractionlayers.Dense(10) #Output layer, output expected result])model.summary() # print network structureSo in the convolutional layer 1, the shape value of the image should be passed in
1.2 About compilation
Before you are ready to train your model, you need to set it up a bit more.The following is added in the compilation step of the model:
(1) loss function (loss): used to measure the accuracy of the model during training.You will want to minimize this function in order to "steer" the model in the right direction.
Loss functions include predicted value and actual squared difference (binary cross entropy), mean squared difference, etc.
(2) Optimizer ((optimizer): Determines how the model is updated based on the data it sees and its own loss function.
Help update parameters in real time
(3) metrics: used to monitor training and testing steps.The following examples use accuracy, which is the ratio of images that are correctly classified.
1.3 class_names[np.argmax(pre[1])]
See below
import numpy as npa = np.array([3, 1, 2, 4, 6, 1])b=np.argmax(a)# Take out the index corresponding to the maximum value of the element in a. At this time, the maximum value is 6, and the corresponding position index value is 4, (the index value starts from 0 by default)print(b)#4Reference: np.argmax()_wanghua609's blog-CSDN blog_np.argmax
So np.argmax(pre[1]) is the index value i of the maximum confidence of the first image in the test set for the clothing in 10
From class_names[ i ]: take out the name
边栏推荐
- Thinking and summary of the efficiency of IT R&D/development process specification
- leetcode 剑指 Offer 10- II. 青蛙跳台阶问题
- C语言-数组
- 随时牵手 不要随意分手[转帖]
- ECCV 2022 Oral Video Instance Segmentation New SOTA: SeqFormer & IDOL and CVPR 2022 Video Instance Segmentation Competition Champion Scheme...
- 并发之CAS
- The Secrets of the Six-Year Team Leader | The Eight Most Important Soft Skills of Programmers
- DTcloud 装饰器
- 让硬盘更快,让系统更稳定
- leetcode 剑指 Offer 10- I. 斐波那契数列
猜你喜欢

How to make a puzzle in PS, self-study PS software photoshop2022, PS make a puzzle effect

eKuiper Newsletter 2022-07|v1.6.0:Flow 编排 + 更好用的 SQL,轻松表达业务逻辑

只有一台交换机,如何实现主从自动切换之nqa

Why is pnpm hitting npm and yarn dimensionality reduction?

seata源码解析:TM RM 客户端的初始化过程

使用稀疏 4D 卷积对 3D LiDAR 数据中的运动对象进行后退分割(IROS 2022)

嵌入式实操----基于RT1170 移植memtester做SDRAM测试(二十五)

Example of Noise Calculation for Amplifier OPA855

Weekly Report 2022-8-4

Chapter 12 Bayesian Networks
随机推荐
SQL语句查询字段内重复内容,并按重复次数加序号
leetcode 剑指 Offer 10- II. 青蛙跳台阶问题
tear apart loneliness
16种香饭做法全攻略
全面讲解GET 和 POST请求的本质区别是什么?原来我一直理解错了
Weekly Report 2022-8-4
eKuiper Newsletter 2022-07|v1.6.0:Flow 编排 + 更好用的 SQL,轻松表达业务逻辑
欧盟 | 地平线 2020 ENSEMBLE:D2.13 SOTIF Safety Concept(上)
(转)[Json]net.sf.json 和org.json 的差别及用法
基于 Kubernetes 的微服务项目整体设计与实现
画法几何及工程制图考试卷A卷
七夕给自己new一个chatRobot当对象
Dry goods!Generative Model Evaluation and Diagnosis
2022-08-01 Review the basic binary tree and operations
营销建议 | 您有一份八月营销月历待查收! 建议收藏 !
施一公:科学需要想象,想象来自阅读
pytorch余弦退火学习率CosineAnnealingLR的使用
“充钱”也难治快手的“亏亏亏”?
Why do I recommend using smart async?
请问如果想往mysql里面写数据,直接用flink-connector-jdbc就可以吧,可是我在f