当前位置:网站首页>[Regression prediction] Gaussian process regression based on GPML toolbox with matlab code
[Regression prediction] Gaussian process regression based on GPML toolbox with matlab code
2022-08-08 07:34:00 【matlab_dingdang】
1 Introduction
Aiming at the low accuracy of traditional network traffic forecasting, in order to obtain ideal network traffic forecasting results, a network traffic forecasting model based on Gaussian Process Regression (GPR) is proposed. The model first calculates the delay time and embedding dimension, and constructs a Gaussian process regression model.Then use the Gaussian process regression to learn the network flow training set, and use the invasive weed optimization to optimize the parameters of the Gaussian process regression; finally, use the classic network flow test set to test the performance of the model.The experimental results show that the Gaussian process regression model improves the prediction accuracy of network traffic.
2 Emulation code
%%%%%%%%%% Gaussian Process Regression (GPR) %%%%%%%%%
% Demo: prediction using GPR
% ---------------------------------------------------------------------%
clc
close all
clear all
addpath(genpath(pwd))
% load data
%{
x : training inputs
y : training targets
xt: testing inputs
yt: testing targets
%}
% multiple input-multiple output
load('./data/data_2.mat')
% Set the mean function, covariance function and likelihood function
% Take meanConst, covRQiso and likGauss as examples
meanfunc = @meanConst;
covfunc = @covRQiso;
likfunc = @likGauss;
% Initialization of hyperparameters
hyp = struct('mean', 3, 'cov', [2 2 2], 'lik', -1);
% meanfunc = [];
% covfunc = @covSEiso;
% likfunc = @likGauss;
%
% hyp = struct('mean', [], 'cov', [0 0], 'lik', -1);
% Optimization of hyperparameters
hyp2 = minimize(hyp, @gp, -5, @infGaussLik, meanfunc, covfunc, likfunc,x, y);
% Regression using GPR
% yfit is the predicted mean, and ys is the predicted variance
[yfit ys] = gp(hyp2, @infGaussLik, meanfunc, covfunc, likfunc,x, y, xt);
% Visualization of prediction results
% First output
plotResult(yt(:,1), yfit(:,1))
% Second output
plotResult(yt(:,2), yfit(:,2))
3 Run Results
4 References
[1]Li Zhengang. Network Traffic Prediction Model Based on Gaussian Process Regression [J]. Computer Applications, 2014.
Blogger profile: He is good at Matlab simulation in various fields such as intelligent optimization algorithm, neural network prediction, signal processing, cellular automata, image processing, path planning, UAV, etc. Related matlab code questions can be communicated privately.
Some theories refer to online literature. If there is any infringement, contact the blogger to delete it.
边栏推荐
猜你喜欢
随机推荐
Day39------网络相关
数据智能正当时,九章云极DataCanvas公司荣获“最具投资价值公司”
动手学概率论(2)
【枚举】连续因子
Task02:PyTorch进阶训练技巧
不一样的“能ping通不能上网”解决方法
[Typescript] tsconfig.json项目配置说明
HCIA---OSPF实验
CAS详情汇总讲解
动手学线性代数
重载与重写的区别
Monorepo[单一代码库] 与MicroService[微服务] 架构
throw和throws区别
VISIO 2003 在线更新的注册文件
DAY3-深度学习100例-卷积神经网络(CNN)服装图像分类
物联网安全 - 密码学概述
性能测试------LoadRunner
论文解读:《PST-PRNA:使用蛋白质表面地形和深度学习对RNA结合位点的预测》
WinForm(四)一种实现登录的方式
seata什么时候支持sqlserver xa呀?