当前位置:网站首页>Power function Exponential function Logarithmic function
Power function Exponential function Logarithmic function
2022-08-10 06:50:00 【Ye Xian】
幂函数
y = x u % \f Use macros to define as f(#1) y = x^u y=xu(u为实数)
- 幂函数 y = x u % \f Use macros to define as f(#1) y = x^u y=xuThe domain and value range of u的取值,当x>0时, y = x u % \f Use macros to define as f(#1) y = x^u y=xu都有定义.
- Common Power Functions:y=x, y = x 2 % \f Use macros to define as f(#1) y = x^2 y=x2 , y = x 3 % \f Use macros to define as f(#1) y = x^3 y=x3 y = x 3 , y = x , y = 1 x . % \f Use macros to define as f(#1) y = \sqrt[3]{x} , y=\sqrt{x},y=\frac{1}{x}. y=3x,y=x,y=x1.
指数函数
y = a x % \f Use macros to define as f(#1) y=a^x y=ax (a>0,a ≠ \not = = 1)
- 定义域:(- ∞ \infty ∞ ,+ ∞ \infty ∞),值域:(0,+ ∞ \infty ∞).
- 单调性:当a>1时, y = a x y=a^x y=ax单调增;当0<a<1时, y = a x y=a^x y=ax单调减.
- Common exponential function: y = e x y=e^x y=ex,单调增, lim x → − ∞ \lim \atop x\rightarrow-\infty x→−∞lim e x = 0 e^x =0 ex=0, lim x → + ∞ \lim \atop x\rightarrow +\infty x→+∞lim e x = + ∞ e^x =+\infty ex=+∞.
- 部分解释:a ≠ \not = = 1就不用说了,a=1就全是1了 ;a>0,如果a<0,比如a= -5,那么便是 y = ( − 5 ) x y=(-5)^x y=(−5)x, x可以为 1 2 \frac{1}{2} 21 ,即 − 5 \sqrt{-5} −5 ,Obviously, the square root cannot be zero,Zero is meaningless; 0 0 = 1 , 0 n = 0 ( n > 0 ) , 0 − n = 1 0 n ( n > 0 ) ( And the denominator cannot be 0 的 ) 0^0=1,0^n=0(n>0),0^-\raisebox{0.25em}{n} =\frac{1}{0^n}(n>0)(And the denominator cannot be0的) 00=1,0n=0(n>0),0−n=0n1(n>0)(And the denominator cannot be0的)
对数函数
y = log a x \raisebox{0.25em}{y} \raisebox{0.25em}{=} \raisebox{0.25em}{log} a \raisebox{0.25em}{x} y=logax (a>0,a ≠ \not = = 1)
- 定义域:(0,+ ∞ \infty ∞),值域:(- ∞ \infty ∞,+ ∞ \infty ∞).
- 单调性:当a>1时, y = log a x \raisebox{0.25em}{y} \raisebox{0.25em}{=} \raisebox{0.25em}{log} a \raisebox{0.25em}{x} y=logax 单调增;当0<a<1时, y = log a x \raisebox{0.25em}{y} \raisebox{0.25em}{=} \raisebox{0.25em}{log} a \raisebox{0.25em}{x} y=logax 单调减.
- Common logarithmic functions: y = l n x y=lnx y=lnx ,单调增, lim x → − ∞ \lim \atop x\rightarrow-\infty x→−∞lim l n x = − ∞ lnx=-\infty lnx=−∞, lim x → + ∞ \lim \atop x\rightarrow +\infty x→+∞lim l n x = + ∞ lnx =+\infty lnx=+∞.
- 部分解释:如果a不大于0,可能出现一个x对应多个y值,This doesn't fit the definition of a function,如a=-1, − 1 y = x -1\raisebox{0.25em}{y}=x −1y=x,如x=1,There are countlessy与其对应
边栏推荐
猜你喜欢
【强化学习】《Easy RL》- Q-learning - CliffWalking(悬崖行走)代码解读
【8月9日活动预告】Prometheus峰会
裸辞—躺平—刷题—大厂(Android面试的几大技巧)
C language file operation
DGIOT支持工业设备租赁以及远程管控
浅谈C语言整型数据的存储
MySQL之InnoDB引擎(六)
Tencent Cloud Song Xiang: Kubernetes cluster utilization improvement practice
【MySQL】使用MySQL Workbench软件新建表
SCS【2】单细胞转录组 之 cellranger
随机推荐
3. Transactions [mysql advanced]
navicat for mysql 连接时报错:1251-Client does not support authentication protocol requested by server
[Network Security] Practice AWVS Range to reproduce CSRF vulnerability
QScroller的QScrollerProperties参数研究
Log4j2基本使用
Qt程序字体初始化引起的白屏问题
MySQL's InnoDB engine (6)
Tencent Cloud Song Xiang: Kubernetes cluster utilization improvement practice
强化学习_05_DataWhale近端策略优化
复杂AB实验
2022 Henan Mengxin League Game (5): University of Information Engineering C - Throwing a Handkerchief
Qt借助隐藏控件和QSS绘制重复元素
调试ZYNQ的u-boot 2017.3 不能正常启动,记录调试过程
裸辞—躺平—刷题—大厂(Android面试的几大技巧)
2022 Henan Mengxin League Game (5): University of Information Engineering F - Split Turf
如何正确理解线程机制中常见的I/O模型,各自主要用来解决什么问题?
【强化学习】《Easy RL》- Q-learning - CliffWalking(悬崖行走)代码解读
数据库学习之表的约束
ESP32 485风速
mysql数据库定时备份(保留近7天的备份)