当前位置:网站首页>Signal and system 2022 spring operation - the ninth operation
Signal and system 2022 spring operation - the ninth operation
2022-04-22 01:05:00 【Zhuo Qing】

◎ This article is downloaded from the Internet : Signals and systems 2022 Spring term homework - The ninth assignment : https://blog.csdn.net/zhuoqingjoking97298/article/details/124319518
§01 The base Basic work
1.1 Signal sampling and recovery
1.1.1 Sampled signal spectrum
Let the bottom width of triangle and raised cosine signal be τ \tau τ , The sampling interval is T s = τ / 8 T_s = \tau /8 Ts=τ/8 when , Draw the spectrum of the sampled signal respectively .

▲ chart 1.1.1 Triangle and rising cosine signal
1.1.2 Rectangular signal sampling frequency
The bottom width of the rectangular signal is known τ = 2.5 m s \tau = 2.5ms τ=2.5ms . Let the spectrum of the signal be 8 The spectral components beyond the zero crossing points can be ignored , What is the minimum sampling frequency for this model ?

▲ chart 1.1.2 Signal and corresponding spectrum
1.2 Laplace transform and z Transformation
1.2.1 Find the Laplace transform of the signal
Find the Laplace transform of the following functions , And draw the zero pole distribution diagram of the signal . By default , Is to find the unilateral Laplace transform of the signal .
( 1 ) 1 − e − a t ; ( 2 ) sin t + 2 cos t ; \left( 1 \right)\,\,\,\,1 - e^{ - at} ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\,\,\,\,\sin t + 2\cos t; (1)1−e−at;(2)sint+2cost; ( 3 ) t ⋅ e − 2 t ; ( 4 ) e − t sin 2 t ; \left( 3 \right)\,\,\,\,t \cdot e^{ - 2t} ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\,\,\,\,e^{ - t} \sin 2t; (3)t⋅e−2t;(4)e−tsin2t; ( 5 ) ( 1 + 2 t ) ⋅ e − t ; ( 6 ) ( 1 − cos α t ) e − β t ; \left( 5 \right)\,\,\,\,\left( {1 + 2t} \right) \cdot e^{ - t} ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 6 \right)\,\,\,\,\left( {1 - \cos \alpha t} \right)e^{ - \beta t} ; (5)(1+2t)⋅e−t;(6)(1−cosαt)e−βt; ( 7 ) t 2 + 2 t ; ( 8 ) 2 δ ( t ) − 3 e − 7 t ; \left( 7 \right)\,\,\,\,t^2 + 2t;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 8 \right)\,\,\,\,2\delta \left( t \right) - 3e^{ - 7t} ; (7)t2+2t;(8)2δ(t)−3e−7t; ( 9 ) e − α t sinh ( β t ) ; ( 10 ) cos 2 ( Ω t ) ; \left( 9 \right)\,\,\,\,e^{ - \alpha t} \sinh \left( {\beta t} \right);\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {10} \right)\,\,\,\,\cos ^2 \left( {\Omega t} \right); (9)e−αtsinh(βt);(10)cos2(Ωt); ( 11 ) 1 β − α ( e − α t − e − β t ) ; ( 12 ) e − ( t + a ) cos ω t ; \left( {11} \right)\,\,\,\,{1 \over {\beta - \alpha }}\left( {e^{ - \alpha t} - e^{ - \beta t} } \right)\,;\,\,\,\,\,\left( {12} \right)\,\,\,\,e^{ - \left( {t + a} \right)} \cos \omega t; (11)β−α1(e−αt−e−βt);(12)e−(t+a)cosωt; ( 13 ) t ⋅ e − ( t − 2 ) ⋅ u ( t − 1 ) ; ( 14 ) e − t a f ( t a ) \left( {13} \right)\,\,\,\,t \cdot e^{ - \left( {t - 2} \right)} \cdot u\left( {t - 1} \right);\,\,\,\,\,\,\,\,\,\,\left( {14} \right)\,\,\,\,e^{ - {t \over a}} f\left( { {t \over a}} \right) (13)t⋅e−(t−2)⋅u(t−1);(14)e−atf(at) ( 15 ) e − a t f ( t a ) ; ( 16 ) t ⋅ cos 3 ( 3 t ) ; \left( {15} \right)\,\,\,\,e^{ - at} f\left( { {t \over a}} \right);\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {16} \right)\,\,\,\,t \cdot \cos ^3 \left( {3t} \right); (15)e−atf(at);(16)t⋅cos3(3t); ( 17 ) t 2 ⋅ cos ( 2 t ) ; ( 18 ) 1 t ( 1 − e − a t ) ; \left( {17} \right)\,\,\,\,t^2 \cdot \cos \left( {2t} \right);\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {18} \right)\,\,\,\,{1 \over t}\left( {1 - e^{ - at} } \right); (17)t2⋅cos(2t);(18)t1(1−e−at); ( 19 ) e − 3 t − e − 5 t t ; ( 20 ) sin ( α t ) t ; \left( {19} \right)\,\,\,\,{ {e^{ - 3t} - e^{ - 5t} } \over t};\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {20} \right)\,\,\,\,{ {\sin \left( {\alpha t} \right)} \over t}; (19)te−3t−e−5t;(20)tsin(αt);
among , If you include functions f ( t ) f\left( t \right) f(t) , So suppose it corresponds to Laplace Transformation for F ( s ) F\left( s \right) F(s) .
(1) It must be done
The above signals have even numbers .
Of other signals Laplace Transformations are all Choose a question .
1.2.2 Signal seeking z Transformation
Find the of the following sequence signals z z z Transformation X ( z ) X\left( z \right) X(z) , It is shown that the convergence region , Will come out X ( z ) X\left( z \right) X(z) Zero pole diagram of .
( 1 ) ( 1 4 ) n u ( t ) ; ( 2 ) ( − 1 3 ) n u ( t ) ; \left( 1 \right)\,\,\,\,\left( { {1 \over 4}} \right)^n u\left( t \right);\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\,\,\,\,\left( { - {1 \over 3}} \right)^n u\left( t \right); (1)(41)nu(t);(2)(−31)nu(t); ( 3 ) ( 1 2 ) n u ( t ) ; ( 4 ) ( − 1 2 ) n u [ − n ] ; \left( 3 \right)\,\,\,\,\left( { {1 \over 2}} \right)^n u\left( t \right);\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\,\,\,\,\left( { - {1 \over 2}} \right)^n u\left[ { - n} \right]; (3)(21)nu(t);(4)(−21)nu[−n]; ( 5 ) − ( 1 6 ) n − 1 u [ − n − 1 ] ; ( 6 ) u [ n − 1 ] ; \left( 5 \right)\,\,\,\, - \left( { {1 \over 6}} \right)^{n - 1} u\left[ { - n - 1} \right];\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 6 \right)\,\,\,\,\,u\left[ {n - 1} \right]; (5)−(61)n−1u[−n−1];(6)u[n−1]; ( 7 ) ( 1 10 ) n { u [ n ] − u [ n − 3 ] } ; \left( 7 \right)\,\,\,\,\left( { {1 \over {10}}} \right)^n \left\{ {u\left[ n \right] - u\left[ {n - 3} \right]} \right\}; (7)(101)n{ u[n]−u[n−3]}; ( 8 ) ( 1 5 ) n u [ n ] + ( 1 6 ) n u [ n ] ; \left( 8 \right)\,\,\,\,\left( { {1 \over 5}} \right)^n u\left[ n \right] + \left( { {1 \over 6}} \right)^n u\left[ n \right]; (8)(51)nu[n]+(61)nu[n]; ( 9 ) δ [ n ] − 1 2 δ [ n − 8 ] \left( 9 \right)\,\,\,\,\delta \left[ n \right] - {1 \over 2}\delta \left[ {n - 8} \right] (9)δ[n]−21δ[n−8]
(1) It must be done
The above signals have even numbers .
Of other signals z Transformations are all “ Choose a question ”.
1.2.3 Bilateral sequence z Transformation
Qiushi Xiaobian sequence x [ n ] x\left[ n \right] x[n] Of z z z Transformation , And indicate the convergence region . Draw out z z z Pole zero diagram of transformation .
x [ n ] = ( 1 a ) ∣ n ∣ , ∣ a ∣ > 1 x\left[ n \right] = \left( { {1 \over a}} \right)^{\left| n \right|} ,\,\,\left| a \right| > 1 x[n]=(a1)∣n∣,∣a∣>1
§02 real Inspection operation
2.1 MATLAB Medium Laplace,ZT Transformation of
stay MATLAB Practice using laplace 、 ilaplace 、 ztrans 、 iztrans Command complete Laplace Transform sum z Transformation and inverse transformation . And verify the corresponding results in the previous system .
2.1.1 MATLAB To solve the problem LT Code
(1)Laplace Transformation
test Laplace Transformation example :
(1) f f ( t ) = t 2 f\left( t \right) = t^2 f(t)=t2 ;
(2) f ( t ) = e − 3 t f\left( t \right) = e^{ - 3t} f(t)=e−3t
>> syms t
>> laplace(t^2)
ans = 2/s^3
>> laplace(exp(4*t))
ans = 1/(s-4
(2)Laplace Reverse transformation
measurement Laplace Inverse transformation example :
( 1 ) 1 ( s + 1 ) 2 ; ( 2 ) 1 s 2 + 4 ; \left( 1 \right)\,\,\,\,{1 \over {\left( {s + 1} \right)^2 }};\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\,\,\,\,{1 \over {s^2 + 4}}; (1)(s+1)21;(2)s2+41;
>> syms s
>> ilaplace(1/(1+s)^2)
ans = t*exp(-t)
>> ilaplace(1/(s^2+4))
ans = 1/4*4^(1/2)*sin(4^(1/2)*t)
2.1.2 MATLAB To solve the problem z Transform code
Here's the code for the test :
ztrans(f)
>> f=n^4
>> ztrans(f)
>ans = z*(z^3+11*z^2+11*z+1)/(z-1)^5
iztrans(f)
>> iztrans(z/(z-2))
ans = 2^n
■ Links to related literature :
● Related chart Links :
版权声明
本文为[Zhuo Qing]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204211631445938.html
边栏推荐
- Mobile Internet app development, byte beating, JD 360 Netease interview questions sorting
- [redis] using redis to optimize the display of provinces, the data will not be displayed
- torch. Usage of max()
- 智能生活—给智能家居的设备定时有多方便?
- SWOOLE高性能内存数据库的使用和配置教程
- Rasa对话机器人连载四 第121课:Rasa对话机器人Debugging项目实战之电商零售对话机器人运行流程调试全程演示-4
- Oceanbase 和 TiDB 粗浅对比之 - 执行计划
- 集简云 x 云南讯飞:一招解决抖音推广获客转化难题,实现私信回复实时响应!
- Redis has three modes - master-slave replication, sentinel mode and cluster
- While hoarding goods, it's time to recognize cans again
猜你喜欢

基于eBPF技术的开源项目Kindling之探针架构介绍

数字化时代,企业运维面临现状及挑战分析解读

Hold these five points! On the job postgraduate entrance examination can also go ashore!

How to set the validity period of win11 account password? Win11 account password usage period setting tutorial

ZGC garbage collector for JVM from getting started to giving up

If the garment industry wants to survive the "epidemic disaster", why does winner fashion become a growth sample?

RPCX源码学习-server端

Addition, deletion, modification and query of advanced MySQL data (DML)

im即时通讯开发技术:100到1000万高并发的架构演进

Build JMeter + Jenkins + ant sustainability
随机推荐
7-Zip 曝出零日安全漏洞!通过“模仿文件扩展名”向攻击者提供管理员权限
R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟
From the perspective of source code, what are the ways to create thread pool
学习神经网络 绘图matplotlib
RPCX源码学习-server端
[知识图谱] Tushare数据获取和展示(1/*)
Cookie & session learning
MySQL数据库常识之储存引擎
Mobile Internet development major, an interview experience about JVM
I use ehcache to improve the query performance by 100 times. It's really fragrant
Build a personal blog (WordPress) on Alibaba cloud
【面试普通人VS高手系列】能谈一下CAS机制吗?
Cloud native enthusiast weekly: looking for open source alternatives to netlify
[知识图谱] 金融证券知识图谱项目目录
Why does the web login need a verification code?
Mobile Internet app development, byte beating, JD 360 Netease interview questions sorting
小米和智汀的智能摄像头,保护你的家庭隐私
Oceanbase 和 TiDB 粗浅对比之 - 执行计划
终于搞定微信扫码登录了,真香。。
【课程汇总】Hello HarmonyOS系列课程,手把手带你零基础入门