当前位置:网站首页>PyTorch笔记——通过搭建ResNet熟悉网络搭建方式(完整代码)
PyTorch笔记——通过搭建ResNet熟悉网络搭建方式(完整代码)
2022-04-23 05:44:00 【umbrellalalalala】
参考资料:《深度学习框架PyTorch:入门与实践》
注意:书籍作者表示要注意编程简洁,所以本文的网络搭建方式是可以借鉴的。
完整代码
部分讲解见注释:
from torch import nn
import torch as t
from torch.nn import functional as F
# 实现子module:Residual Block
class ResidualBlock(nn.Module):
def __init__(self, inchannel, outchannel, stride=1, shortcut=None):
super().__init__()
self.left = nn.Sequential(
# padding=1指的是上下左右各补一行,如果是padding=(1, 1)则是
# 上下各补一行、左右各补一行(先高后宽)
nn.Conv2d(inchannel, outchannel, 3, stride, 1, bias=False),
nn.BatchNorm2d(outchannel),
# inplace=True是指原地操作,直接修改上层传递下来的tensor,节省内存
nn.ReLU(inplace=True),
nn.Conv2d(outchannel, outchannel, 3, 1, 1, bias=False),
nn.BatchNorm2d(outchannel))
self.right = shortcut
def forward(self, x):
out = self.left(x)
residual = x if self.right is None else self.right(x)
out += residual
return F.relu(out)
class ResNet(nn.Module):
def __init__(self, num_classes=1000):
super().__init__()
self.pre = nn.Sequential(
nn.Conv2d(3, 64, 7, 2, 3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
# kernel_size, stride, padding
nn.MaxPool2d(3, 2, 1))
self.layer1 = self._make_layer(64, 128, 3)
self.layer2 = self._make_layer(128, 256, 4, stride=2)
self.layer3 = self._make_layer(256, 512, 6, stride=2)
self.layer4 = self._make_layer(512, 512, 3, stride=2)
self.fc = nn.Linear(512, num_classes)
def _make_layer(self, inchannel, outchannel, block_num, stride=1):
shortcut = nn.Sequential(
nn.Conv2d(inchannel, outchannel, 1, stride, bias=False),
nn.BatchNorm2d(outchannel))
layers = []
# 第一个把inchannel变成outchannel
layers.append(ResidualBlock(inchannel, outchannel, stride, shortcut))
for i in range(1, block_num):
layers.append(ResidualBlock(outchannel, outchannel))
# list a=[1,2,3],那么*a就是指1 2 3
return nn.Sequential(*layers)
def forward(self, x):
x = self.pre(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = F.avg_pool2d(x, 7)
# 变为[batch, ...]
x = x.view(x.size(0), -1)
return self.fc(x)
测试前向传播
model = ResNet()
# 模拟224×224的图片,通道为3。开头的1是batch_size
input = t.randn(1, 3, 224, 224)
o = model(input)
o.shape
输出结果:
torch.Size([1, 1000])
对应分类问题的1000个类别。
版权声明
本文为[umbrellalalalala]所创,转载请带上原文链接,感谢
https://blog.csdn.net/umbrellalalalala/article/details/119981166
边栏推荐
- POI exports to excel, and the same row of data is automatically merged into cells
- 多个一维数组拆分合并为二维数组
- MySQL realizes master-slave replication / master-slave synchronization
- MySQL transaction
- Pytorch——数据加载和处理
- Multithreading and high concurrency (3) -- synchronized principle
- SQL注入
- filebrowser实现私有网盘
- mysql如何将存储的秒转换为日期
- 治療TensorFlow後遺症——簡單例子記錄torch.utils.data.dataset.Dataset重寫時的圖片維度問題
猜你喜欢
Configure domestic image accelerator for yarn
Anaconda installed pyqt5 and pyqt5 tools without designer Exe problem solving
2-軟件設計原則
你不能访问此共享文件夹,因为你组织的安全策略阻止未经身份验证的来宾访问
创建二叉树
lambda表达式
Latex quick start
SQL注入
Navicate连接oracle(11g)时ORA:28547 Connection to server failed probable Oeacle Net admin error
数字图像处理基础(冈萨雷斯)二:灰度变换与空间滤波
随机推荐
多线程与高并发(3)——synchronized原理
治療TensorFlow後遺症——簡單例子記錄torch.utils.data.dataset.Dataset重寫時的圖片維度問題
umi官网yarn create @umijs/umi-app 报错:文件名、目录名或卷标语法不正确
DBCP使用
jdbc入门\获取数据库连接\使用PreparedStatement
Hotkeys, interface visualization configuration (interface interaction)
编程记录——图片旋转函数scipy.ndimage.rotate()的简单使用和效果观察
异常的处理:抓抛模型
opensips(1)——安装opensips详细流程
Solve the error: importerror: iprogress not found Please update jupyter and ipywidgets
Pytorch学习记录(四):参数初始化
Pytorch学习记录(五):反向传播+基于梯度的优化器(SGD,Adagrad,RMSporp,Adam)
EditorConfig
mysql实现主从复制/主从同步
2 - principes de conception de logiciels
interviewter:介绍一下MySQL日期函数
手动删除eureka上已经注册的服务
Write your own redistemplate
Solution record of slow access speed of SMB service in redhat6
自定义异常类