当前位置:网站首页>2022数二真题
2022数二真题
2022-04-21 16:19:00 【Java全栈研发大联盟】

思路分析:
看到要证明积分不等式的问题,首先想到构造函数,那构造什么样的函数呢?题目要证明什么,我们就构造什么,本题我们就可以构造 F ( x ) = ( x − a ) f ( a + x 2 ) − ∫ a x f ( t ) d t F(x)=(x-a)f(\frac{a+x}{2})-\int_{a}^{x}f(t)dt F(x)=(x−a)f(2a+x)−∫axf(t)dt
证明:
必要性: 令 F ( x ) = ( x − a ) f ( a + x 2 ) − ∫ a x f ( t ) d t F(x)=(x-a)f(\frac{a+x}{2})-\int_{a}^{x}f(t)dt F(x)=(x−a)f(2a+x)−∫axf(t)dt ,很明显F(a)=0,
F ′ ( x ) = f ( a + x 2 ) + 1 2 ( x − a ) f ′ ( a + x 2 ) − f ( x ) F^{\prime}(x)=f(\frac{a+x}{2})+\frac{1}{2}(x-a)f^{\prime}(\frac{a+x}{2})-f(x) F′(x)=f(2a+x)+21(x−a)f′(2a+x)−f(x)
= 1 2 ( x − a ) f ˊ ( a + x 2 ) − [ f ( x ) − f ( a + x 2 ) ] =\frac{1}{2}(x-a)\acute{f}(\frac{a+x}{2})-[f(x)-f(\frac{a+x}{2})] =21(x−a)fˊ(2a+x)−[f(x)−f(2a+x)] = 1 2 ( x − a ) f ′ ( a + x 2 ) − 1 2 ( x − a ) f ( ξ ) ˊ =\frac{1}{2}(x-a)f^{\prime}(\frac{a+x}{2})-\frac{1}{2}(x-a)\acute{f(\xi)} =21(x−a)f′(2a+x)−21(x−a)f(ξ)ˊ, ξ ∈ ( a + x 2 , x ) \xi\in(\frac{a+x}{2},x) ξ∈(2a+x,x) = 1 2 ( x − a ) [ f ˊ ( a + x 2 ) − f ′ ( ξ ) ) ] =\frac{1}{2}(x-a)[\acute{f}(\frac{a+x}{2})-f^{\prime}(\xi))] =21(x−a)[fˊ(2a+x)−f′(ξ))]
因为 f ′ ′ ( x ) > 0 , f ′ ( a + x 2 ) − f ′ ( ξ ) < 0 f^{\prime{\prime}}(x)>0,f^{\prime}(\frac{a+x}{2})-f^{\prime}(\xi)<0 f′′(x)>0,f′(2a+x)−f′(ξ)<0,故而 F ′ ( x ) < 0 F^{\prime}(x)<0 F′(x)<0, 所以 F ( b ) ≤ F ( a ) = 0 F(b) \leq F(a)=0 F(b)≤F(a)=0,所以 F ( b ) = ( b − a ) f ( a + b 2 ) − ∫ a b f ( t ) d t ≤ 0 , 即 f ( a + b 2 ) < 1 b − a ∫ a b f ( t ) d t F(b)=(b-a)f(\frac{a+b}{2})-\int_{a}^{b}f(t)dt \leq 0,即f(\frac{a+b}{2})<\frac{1}{b-a}\int_{a}^{b}f(t)dt F(b)=(b−a)f(2a+b)−∫abf(t)dt≤0,即f(2a+b)<b−a1∫abf(t)dt
充分性:
∀ x 0 ∈ ( − ∞ , + ∞ ) \forall x_0\in(-\infty,+\infty) ∀x0∈(−∞,+∞),取 a = x 0 − h , b = x 0 + h a=x_0-h,b=x_0+h a=x0−h,b=x0+h,其中 h > 0 h>0 h>0,那我们的式子 f ( a + b 2 ) ≤ 1 b − a ∫ a b f ( t ) d t f(\frac{a+b}{2})\leq\frac{1}{b-a}\int_{a}^{b}f(t)dt f(2a+b)≤b−a1∫abf(t)dt就可以转化成 f ( x 0 ) ≤ 1 2 h ∫ x 0 − h x 0 + h f ( x ) d x ⇔ ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h ≥ 0 f(x_0)\leq\frac{1}{2h} \int_{x_0-h}^{x_0+h}f(x)dx \Leftrightarrow \frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h}\geq0 f(x0)≤2h1∫x0−hx0+hf(x)dx⇔2h∫x0−hx0+hf(x)dx−2hf(x0)≥0,
为了证明题目中的 f ′ ′ ( x ) ≥ 0 , f^{\prime\prime}(x)\geq 0, f′′(x)≥0,我们只能想到2种办法
①从导数的定义式上入手,想办法构造导数的定义式
②利用泰勒公式(因为泰勒公式里面还有一阶导和二阶导)
③洛必达法则(不停地分子分母洛下去,必定能出现高阶导数)
对于本题而言,我们已经引入了邻域 ( x 0 − h , x 0 + h ) (x_0-h,x_0+h) (x0−h,x0+h),因为要证明 f ′ ′ ( x ) f^{\prime\prime}(x) f′′(x),所以我们不妨假设a和b隔得非常非常近,即 lim h → 0 \lim_{h\to 0} limh→0,对于这种求极限的情况,我们首先想到洛必达法则,故而对于式子 ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h ≥ 0 \frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h}\geq0 2h∫x0−hx0+hf(x)dx−2hf(x0)≥0,我们可以想办法用洛必达法则解决,对于分子而言,必须要进行3次求导才能出现 f ′ ′ ( x ) f^{\prime\prime}(x) f′′(x)二阶导,而分母却经不起3次求导,那怎么办呢,我们把分母的次幂加大到3阶 ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h 3 ≥ 0 \frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h^3}\geq0 2h3∫x0−hx0+hf(x)dx−2hf(x0)≥0,然后上下求导
lim h → 0 ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h 3 \lim_{h\to0}\frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h^3} limh→02h3∫x0−hx0+hf(x)dx−2hf(x0)
= lim h → 0 f ( x 0 + h ) − f ( x 0 − h ) − 2 f ( x 0 ) 6 h 2 =\lim_{h\to0}\frac{f(x_0+h)-f(x_0-h)-2f(x_0)}{6h^2} =h→0lim6h2f(x0+h)−f(x0−h)−2f(x0) = lim h → 0 f ′ ( x 0 + h ) + f ′ ( x 0 − h ) 12 h =\lim_{h\to0} \frac{f^{\prime}(x_0+h)+f^{\prime}(x_0-h)}{12h} =h→0lim12hf′(x0+h)+f′(x0−h) = lim h → 0 f ′ ′ ( x 0 + h ) − f ′ ′ ( x 0 − h ) 12 =\lim_{h\to0}\frac{f^{\prime\prime}(x_0+h)-f^{\prime\prime}(x_0-h)}{12} =h→0lim12f′′(x0+h)−f′′(x0−h)
当 h → 0 h\to0 h→0时,分子就是 f ′ ′ ( x 0 ) + f ′ ′ ( x 0 ) = 2 f ′ ′ ( x 0 ) f^{\prime\prime}(x_0)+f^{\prime\prime}(x_0)=2f^{\prime\prime}(x_0) f′′(x0)+f′′(x0)=2f′′(x0)
所以 = lim h → 0 f ′ ′ ( x 0 + h ) + f ′ ′ ( x 0 − h ) 12 = f ′ ′ ( x 0 ) 6 =\lim_{h\to0} \frac{f^{\prime\prime}(x_0+h)+f^{\prime\prime}(x_0-h)}{12}=\frac{f^{\prime\prime}(x_0)}{6} =h→0lim12f′′(x0+h)+f′′(x0−h)=6f′′(x0)
所以 f ′ ′ ( x 0 ) 6 ≥ 0 \frac{f^{\prime\prime}(x_0)}{6}\geq0 6f′′(x0)≥0,由极限保号性, f ′ ′ ( x 0 ) ≥ 0 f^{\prime\prime}(x_0)\geq0 f′′(x0)≥0. 本题得证
版权声明
本文为[Java全栈研发大联盟]所创,转载请带上原文链接,感谢
https://blog.csdn.net/qq_40241957/article/details/124301309
边栏推荐
- 2022 Chongqing latest construction welder (construction special operation) simulation question bank and answers
- BUUCTF之[ACTF2020 新生赛]BackupFile
- Yunna: computer room asset management system web version, application of equipment asset information management
- .NET Swagger配置
- 解决 idea web项目没有小蓝点的问题
- [2023 questions d'appel d'offres] Huawei Personality Evaluation (Comprehensive Evaluation) Strategic Guide
- CRM系统可以帮助改善客户体验吗?
- 全国查询水电气费免费接口(三)
- Arthas Tunnel使用
- 目前5G SoC 芯片技术成熟吗?
猜你喜欢

Qt5.14.2编译mysql

昊天旭辉签约长扬科技,携手共建工业互联网安全新生态

实现高德坐标转GPS坐标

New media people must have 10 efficiency tools and artifact collection

Function stack frame creation and destruction (understand)

Changan dark blue's first product can be pure electricity, extended range and hydrogen electricity, with an acceleration of 5.9s

必刷2022年重庆最新消防设施操作员模拟题库及答案

iOS开发面试攻略(KVO、KVC、多线程、锁、runloop、计时器)

Campus talking notes (5)

Yunna: basic functional features of fixed asset management system in asset intensive enterprises
随机推荐
"Checking and remedying deficiencies", sorting out the core concepts of DDD
Outsourcing student management system architecture scheme
昊天旭辉签约长扬科技,携手共建工业互联网安全新生态
R语言aov函数进行单因素方差分析(One-way ANOVA)、使用Q-Q图来评估方差分析因变量的正态性、Bartlett验证方差的相等性(齐次性)、car包中的outlierTest函数异常检验
2022 Chongqing latest construction welder (construction special operation) simulation question bank and answers
Infrastructure 知识: DNS 命令: dig, host
What are the technological innovations of Apple A13 Processor?
mingw下载
嵌入式GUI盘点-你了解几款?
SQL--数据库的操作(DDL,DML,DQL)+使用命令查看当前数据库的存储位置(数据库版本查询)
打卡:4.21 C语言篇 -(1)初识C语言 - (11)关键字register,#define定义的宏
全国查询水电气费免费接口(三)
Yunna: Problems and causes of hospital fixed assets management, implementation of asset management system
The conflict between Russia and Ukraine raised concerns. The five eye network security department suggested that allies strengthen infrastructure protection measures
Infrastructure 知识: DNS 命令: dig, host
想靠“泄露数据”来发家?真刑啊
OJ每日一练——字符个数
项目实训2022-4-21(火焰草)
Root unlock problem
排序课后练习题