[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Overview

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction

FaceReconstructionDemo

Language grade: Python License ECCV

Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable 3D Dense Face Alignment via Tensorflow Lite framework, face mesh, head pose, landmarks, and more.

  • CPU real-time face deteciton, alignment, and reconstruction pipeline.
  • Lightweight render library, 5x faster (3ms vs 15ms) than the Sim3DR tools.
  • Camera matrix and dense/sparse landmarks prediction via a single network.
  • Generate facial parameters for robust head pose and expression estimation.

Setup

Basic Requirements

  • Python 3.6+
  • pip3 install -r requirements.txt

Render for Dense Face

  • GCC 6.0+
  • bash build_render.sh
  • (Cautious) For Windows user, please refer to this tutorial for more details.

3D Facial Landmarks

In this project, we perform dense face reconstruction by 3DMM parameters regression. The regression target is simplified as camera matrix (C, shape of 3x4), appearance parameters (S, shape of 1x40), and expression variables (E, shape of 1x10), with 62 dimensions in total.

The sparse or dense facial landmarks can be estimated by applying these parameters to a predefined 3D model, such as BFM. More specifically, the following formula describes how to generate a face through parameters:

Generate Face

where U and W are from pre-defined face model. Combine them linearly with parameters to generate sparse or dense faces. Finally, we need to integrate the posture information into the result:

With matrix

where R (shape of 3x3) and T (shape of 3x1) denote rotation and translation matrices, respectively, which are fractured from the camera matrix C.

Sparse

sparse demo

Since we have reconstructed the entire face, the 3D face alignment can be achieved by selecting the landmarks at the corresponding positions. See [TPAMI 2017] Face alignment in full pose range: A 3d total solution for more details.

Comparing with the method of first detecting 2D landmarks and then performing depth estimation, directly fitting 3DMM to solve 3D face alignment can not only obtain more accurate results in larger pose scenes, but also has obvious advantages in speed.

We provide a demonstration script that can generate 68 landmarks based on the reconstructed face. Run the following command to view the real-time 3D face alignment results:

python3 demo_video.py -m sparse -f <your-video-path>

Dense

dense demo

Currently, our method supports up to 38,365 landmarks. We draw landmarks every 6 indexes for a better illustration. Run the demonstrate script in dense mode for real-time dense facial landmark localization:

python3 demo_video.py -m dense -f <your-video-path>

Face Reconstruction

Our network is multi-task since it can directly regress 3DMM params from a single face image for reconstruction, as well as estimate the head pose via R and T prediction. During training, the predicted R can supervise the params regression branch to generate refined face mesh. Meanwhile, the landmarks calculated via the params are provided as the labeled data to the pose estimation branch for training, through the cv2.solvePnP tool.

Theoretically speaking, the head pose estimation task in our model is weakly supervised, since only a few labeled data is required to activate the training process. In detail, the loss function at the initial stage can be described as follows:

Init Pose Loss

After the initialization process, the ground truth can be replaced by the prediction results of other branches. Therefore, the loss function will be transformed to the following equation in the later stage of the training process:

Pose Loss

In general, fitting the 3D model during the training process dynamically can avoid the inaccurate head pose estimation results caused by the coarse predefined model.

Head Pose

pose demo

Traditional head pose estimation approaches, such as Appearance Template Models, Detector Arrays, and Mainfold Embedding have been extensively studied. However, methods based on deep learning improved the prediction accuracy to meet actual needs, until recent years.

Given a set of predefined 3D facial landmarks and the corresponding 2D image projections, the SolvePnP tool can be utilized to calculate the rotation matrix. However, the adopted mean 3D human face model usually introduces intrinsic error during the fitting process. Meanwhile, the additional landmarks extraction component is also kind of cumbersome.

Therefore, we designed a network branch for directly regress 6DoF parameters from the face image. The predictions include the 3DoF rotation matrix R (Pitch, Yaw, Roll), and the 3DoF translation matrix T (x, y, z), Compared with the landmark-based method, directly regression the camera matrix is more robust and stable, as well as significantly reduce the network training cost. Run the demonstrate script in pose mode to view the real-time head pose estimation results:

python3 demo_video.py -m pose -f <your-video-path>

Expression

Expression

Coarse expression estimation can be achieved by combining the predefined expressions in BFM linearly. In our model, regression the E is one of the tasks of the params prediction branch. Obviously, the accuracy of the linear combination is positively related to the dimension.

Clipping parameters can accelerate the training process, however, it can also reduce reconstruction accuracy, especially details such as eye and mouth. More specifically, E has a greater impact on face details than S when emotion is involved. Therefore, we choose 10-dimension for a tradeoff between the speed and the accuracy, the training data can be found at here for refinement.

In addition, we provide a simple facial expression rendering script. Run the following command for illustration:

python3 demo_image.py <your-image-path>

Mesh

mesh demo

According to the predefined BFM and the predicted 3DMM parameters, the dense 3D facial landmarks can be easily calculated. On this basis, through the index mapping between the morphable triangle vertices and the dense landmarks defined in BFM, the renderer can plot these geometries with depth infomation for mesh preview. Run the demonstrate script in mesh mode for real-time face reconstruction:

python3 demo_video.py -m mesh -f <your-video-path>

Benchmark

Our network can directly output the camera matrix and sparse or dense landmarks. Compared with the model in the original paper with the same backbone, the additional parameters yield via the pose regression branch does not significantly affect the inference speed, which means it can still be CPU real-time.

Scheme THREAD=1 THREAD=2 THREAD=4
Inference 7.79ms 6.88ms 5.83ms

In addition, since most of the operations are wrapped in the model, the time consumption of pre-processing and post-processing are significantly reduced. Meanwhile, the optimized lightweight renderer is 5x faster (3ms vs 15ms) than the Sim3DR tools. These measures decline the latency of the entire pipeline.

Stage Preprocess Inference Postprocess Render
Each face cost 0.23ms 7.79ms 0.39ms 3.92ms

Run the following command for speed benchmark:

python3 video_speed_benchmark.py <your-video-path>

Citation

@inproceedings{guo2020towards,
    title={Towards Fast, Accurate and Stable 3D Dense Face Alignment},
    author={Guo, Jianzhu and Zhu, Xiangyu and Yang, Yang and Yang, Fan and Lei, Zhen and Li, Stan Z},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    year={2020}
}
Comments
  • __init__() got an unexpected keyword argument 'num_threads'

    __init__() got an unexpected keyword argument 'num_threads'

    While running "python3 demo_video.py -m mesh -f I receive the following ERROR: File "demo_video.py", line 53, in main(args) File "demo_video.py", line 16, in main fa = service.DenseFaceReconstruction("weights/dense_face.tflite") File "/home/happy/PycharmProjects/Dense-Head-Pose-Estimation/service/TFLiteFaceAlignment.py", line 11, in init num_threads=num_threads) TypeError: init() got an unexpected keyword argument 'num_threads'

    opened by berylyellow 2
  • asset/render.so not found

    asset/render.so not found

    While running "python3 demo_video.py -m mesh -f I receive the following ERROR OSError: asset/render.so: cannot open shared object file: No such file or directory I can successfully run the other three modes (sparse, dense, pose)

    opened by fisakhan 2
  • How can i get Depth

    How can i get Depth

    hi, I want to get information about the depth of the face, how do I calculate it? i don't need rendering but only need depth map. like https://github.kakaocorp.com/data-sci/3DDFA_V2_tf2/blob/master/utils/depth.py thank you in advance!

    opened by joongkyunKim 1
  • there is no asset/render.so

    there is no asset/render.so

    Ignore above cudart dlerror if you do not have a GPU set up on your machine. Traceback (most recent call last): File "demo_video.py", line 53, in main(args) File "demo_video.py", line 18, in main color = service.TrianglesMeshRender("asset/render.so", File "/home/xuhao/workspace/Dense-Head-Pose-Estimation-main/service/CtypesMeshRender.py", line 17, in init self._clibs = ctypes.CDLL(clibs)

    opened by hitxuhao 1
  • asset/render.so: cannot open shared object file: No such file or director

    asset/render.so: cannot open shared object file: No such file or director

    It worked well with: $ python3 demo_video.py -m pose -f ./re.mp4 $python3 demo_video.py -m sparse -f ./re.mp4 $ python3 demo_video.py -m dense -f ./re.mp4

    but with mesh not as you see here:

    $python3 demo_video.py -m mesh -f ./re.mp4 2022-12-05 17:03:03.713207: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1 Traceback (most recent call last): File "demo_video.py", line 55, in main(args) File "demo_video.py", line 21, in main color = service.TrianglesMeshRender("asset/render.so", "asset/triangles.npy") File "/home/redhwan/2/HPE/tensorflow/Dense-Head-Pose-Estimation-main/service/CtypesMeshRender.py", line 17, in init self._clibs = ctypes.CDLL(clibs) File "/usr/lib/python3.8/ctypes/init.py", line 373, in init self._handle = _dlopen(self._name, mode) OSError: asset/render.so: cannot open shared object file: No such file or directory

    opened by Algabri 0
  • Memory usage

    Memory usage

    hi @1996scarlet

    Is it expected that the model uses around 18GB of video RAM? Or does it maximises the RAM available to help with speed? (I got a 24GB ram GPU, and usage goes up to 22.2GB while inferencing) Thanks for this amazing MIT license repo btw.

    opened by Tetsujinfr 0
Releases(v1.0)
  • v1.0(Feb 1, 2021)

    Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction

    • CPU real-time face deteciton, alignment, and reconstruction pipeline.
    • Lightweight render library, 5x faster (3ms vs 15ms) than the Sim3DR tools.
    • Camera matrix and dense/sparse landmarks prediction via a single network.
    • Generate facial parameters for robust head pose and expression estimation.
    Source code(tar.gz)
    Source code(zip)
Owner
Remilia Scarlet
Remilia Scarlet
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022