Prevent `CUDA error: out of memory` in just 1 line of code.

Overview

๐Ÿจ Koila

Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it.

Type Checking Formatting Unit testing License: MIT Tweet

Koila

๐Ÿš€ Features

  • ๐Ÿ™… Prevents CUDA error: out of memory error with one single line of code.

  • ๐Ÿฆฅ Lazily evaluates pytorch code to save computing power.

  • โœ‚๏ธ Automatically splits along the batch dimension to more GPU friendly numbers (2's powers) to speed up the execution.

  • ๐Ÿค Minimal API (wrapping all inputs will be enough).

๐Ÿค” Why Koila?

Ever encountered RuntimeError: CUDA error: out of memory? We all love PyTorch because of its speed, efficiency, and transparency, but that means it doesn't do extra things. Things like preventing a very common error that has been bothering many users since 2017.

This library aims to prevent that by being a light-weight wrapper over native PyTorch. When a tensor is wrapped, the library automatically computes the amount of remaining GPU memory and uses the right batch size, saving everyone from having to manually finetune the batch size whenever a model is used.

Also, the library automatically uses the right batch size to GPU. Did you know that using bigger batches doesn't always speed up processing? It's handled automatically in this library too.

Because Koila code is PyTorch code, as it runs PyTorch under the hood, you can use both together without worrying compatibility.

Oh, and all that in 1 line of code! ๐Ÿ˜Š

โฌ‡๏ธ Installation

Koila is available on PyPI. To install, run the following command.

pip install koila

๐Ÿƒ Getting started

The usage is dead simple. For example, you have the following PyTorch code (copied from PyTorch's tutorial)

Define the input, label, and model:

# A batch of MNIST image
input = torch.randn(8, 28, 28)

# A batch of labels
label = torch.randn(0, 10, [8])

class NeuralNetwork(Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = Flatten()
        self.linear_relu_stack = Sequential(
            Linear(28 * 28, 512),
            ReLU(),
            Linear(512, 512),
            ReLU(),
            Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

Define the loss function, calculate output and losses.

loss_fn = CrossEntropyLoss()

# Calculate losses
out = nn(t)
loss = loss_fn(out, label)

# Backward pass
nn.zero_grad()
loss.backward()

Ok. How to adapt the code to use Koila's features?

You change this line of code:

# Wrap the input tensor.
# If a batch argument is provided, that dimension of the tensor would be treated as the batch.
# In this case, the first dimension (dim=0) is used as batch's dimension.
input = lazy(torch.randn(8, 28, 28), batch=0)

Done. You will not run out of memory again.

See examples/getting-started.py for the full example.

๐Ÿ‹๏ธ How does it work under the hood?

CUDA error: out of memory generally happens in forward pass, because temporary variables will need to be saved in memory.

Koila is a thin wrapper around PyTorch. It is inspired by TensorFlow's static/lazy evaluation. By building the graph first, and run the model only when necessarily, the model has access to all the information necessarily to determine how much resources is really need to compute the model.

In terms of memory usage, only shapes of temporary variables are required to calculate the memory usage of those variables used in the model. For example, + takes in two tensors with equal sizes, and outputs a tensor with a size equal to the input size, and log takes in one tensor, and outputs another tensor with the same shape. Broadcasting makes it a little more complicated than that, but the general ideas are the same. By tracking all these shapes, one could easily tell how much memory is used in a forward pass. And select the optimal batch size accordingly.

๐ŸŒ It sounds slow. Is it?

NO. Indeed, calculating shapes and computing the size and memory usage sound like a lot of work. However, keep in mind that even a gigantic model like GPT-3, which has 96 layers, has only a few hundred nodes in its computing graph. Because Koila's algorithms run in linear time, any modern computer will be able to handle a graph like this instantly.

Most of the computing is spent on computing individual tensors, and transferring tensors across devices. And bear in mind that those checks happen in vanilla PyTorch anyways. So no, not slow at all.

๐Ÿ”Š How to pronounce koila?

This project was originally named koala, the laziest species in the world, and this project is about lazy evaluation of tensors. However, as that name is taken on PyPI, I had no choice but to use another name. Koila is a word made up by me, pronounced similarly to voila (It's a French word), so sounds like koala.

โญ Give me a star!

If you like what you see, please consider giving this a star (โ˜…)!

๐Ÿ—๏ธ Why did I build this?

Batch size search is not new. In fact, the mighty popular PyTorch Lightning has it. So why did I go through the trouble and build this project?

PyTorch Lightning's batch size search is deeply integrated in its own ecosystem. You have to use its DataLoader, subclass from their models, and train your models accordingly. While it works well with supervised learning tasks, it's really painful to use in a reinforcement learning task, where interacting with the environment is a must.

In comparison, because Koila is a super lightweight PyTorch wrapper, it works when PyTorch works, thus providing maximum flexibility and minimal changes to existing code.

๐Ÿ“ Todos

  • ๐Ÿงฉ Provide an extensible API to write custom functions for the users.
  • ๐Ÿ˜Œ Simplify internal workings even further. (Especially interaction between Tensors and LazyTensors).
  • ๐Ÿช Work with multiple GPUs.

๐Ÿšง Warning

The code works on many cases, but it's still a work in progress. This is not (yet) a fully PyTorch compatible library due to limited time.

๐Ÿฅฐ Contributing

We take openness and inclusiveness very seriously. We have adopted the following Code of Conduct.

Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the objectโ€™s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (เค‹เคทเคฟเค•เฅ‡เคถ) 103 Nov 25, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website โ€ข Key Features โ€ข How To Use โ€ข Docs โ€ข

Pytorch Lightning 21.1k Dec 29, 2022
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
๐Ÿค Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

๐Ÿค Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023