验证码识别 深度学习 tensorflow 神经网络

Overview

captcha_tf2

验证码识别 深度学习 tensorflow 神经网络
使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上

目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。

实例demo

训练过程

  • 优化器选择: Adam
  • 损失函数: MSLE(均方对数误差)
  • 数据集: 随机生成的10000张图片,按照8:2用于训练和验证
  • 设备: Titan X 在训练过程中第5次epoch即可达到 80的accuracy50以上的val_accuracy
    经过30次epoch accuracy达到93, val_acc在85以上
    最高达到97 acc

目前训练val提升可以,loss下降稳定


demo图片
效果

效果
效果

目录

1. 项目结构

1.1 文件目录

序号 文件 说明
1 model/ 模型权重文件
2 network/ 神经网络
3 settings_tf 项目配置文件
4 tools/ 工具文件
5 data/ 数据文件

1.2 主要文件

序号 文件 说明
1 train.py 训练程序
2 detect.py 测试程序
3 make_data.py 训练集合成程序
4 create_image.py 数据集生产脚本

2. 使用

修改主路径下derect.py的配置变量注:注意config.py的图片size
直接调用python detcet.py
保存格式:*.txt: [6, 9, 5, 6] 1.jpg

3. 训练

3.1 数据准备:

  • 如果自己收集数据较为繁琐,可直接调用create_image.py,修改相应配置即可快速生成图片集和标注文件 无需其他步骤
  • 或是自己去网络上寻找验证码图片集, 保存格式需以数字顺序保存,且标注文件存放在某个单独的 txt中,标注结果是对应的图片名数字-1作为下标 默认采用数据集样式为1.jpg, 2.jpg ...的顺序格式
| ̄ ̄data/
|   |
|   | ̄ ̄images/
|   |   |
|   |   | ̄ ̄1.jpg
|   |   |
|   |   | ̄ ̄2.jpg
|   |    
|   | ̄ ̄label.txt

3.2开始训练

首先修改congig.py配置文件
接着修改train.py

  • 开始训练 python train.py
    训练中

网络

序号
输入 (B, 60, 160, 1)
1 卷积(32) relu BN
2 卷积(64) relu BN 相等池化
3 卷积(128) relu BN 相等池化
4 卷积(64) relu BN 相等池化
5 卷积(32) relu BN 相等池化
6 扁平化
8 全链接(onehot) softmax
输出 (长度, 类别)
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022