PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

Overview

DECOR-GAN

PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fisher, Noam Aigerman, Hao Zhang, Siddhartha Chaudhuri.

Paper | Oral video | GUI demo video

Citation

If you find our work useful in your research, please consider citing:

@article{chen2021decor,
  title={DECOR-GAN: 3D Shape Detailization by Conditional Refinement},
  author={Zhiqin Chen and Vladimir G. Kim and Matthew Fisher and Noam Aigerman and Hao Zhang and Siddhartha Chaudhuri},
  journal={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Dependencies

Requirements:

  • Python 3.6 with numpy, h5py, scipy, sklearn and Cython
  • PyTorch 1.5 (other versions may also work)
  • PyMCubes (for marching cubes)
  • OpenCV-Python (for reading and writing images)

Build Cython module:

python setup.py build_ext --inplace

Datasets and pre-trained weights

For data preparation, please see data_preparation.

We provide the ready-to-use datasets here.

Backup links:

We also provide the pre-trained network weights.

Backup links:

Training

To train the network:

python main.py --data_style style_chair_64 --data_content content_chair_train --data_dir ./data/03001627/ --alpha 0.5 --beta 10.0 --input_size 32 --output_size 128 --train --gpu 0 --epoch 20
python main.py --data_style style_plane_32 --data_content content_plane_train --data_dir ./data/02691156/ --alpha 0.1 --beta 10.0 --input_size 64 --output_size 256 --train --gpu 0 --epoch 20
python main.py --data_style style_car_32 --data_content content_car_train --data_dir ./data/02958343/ --alpha 0.2 --beta 10.0 --input_size 64 --output_size 256 --train --gpu 0 --epoch 20
python main.py --data_style style_table_64 --data_content content_table_train --data_dir ./data/04379243/ --alpha 0.2 --beta 10.0 --input_size 16 --output_size 128 --train --gpu 0 --epoch 50
python main.py --data_style style_motor_16 --data_content content_motor_all_repeat20 --data_dir ./data/03790512/ --alpha 0.5 --beta 10.0 --input_size 64 --output_size 256 --train --asymmetry --gpu 0 --epoch 20
python main.py --data_style style_laptop_32 --data_content content_laptop_all_repeat5 --data_dir ./data/03642806/ --alpha 0.2 --beta 10.0 --input_size 32 --output_size 256 --train --asymmetry --gpu 0 --epoch 20
python main.py --data_style style_plant_20 --data_content content_plant_all_repeat8 --data_dir ./data/03593526_03991062/ --alpha 0.5 --beta 10.0 --input_size 32 --output_size 256 --train --asymmetry --gpu 0 --epoch 20

Note that style_chair_64 means the model will be trained with 64 detailed chairs. You can modify the list of detailed shapes in folder splits, such as style_chair_64.txt. You can also modify the list of content shapes in folder splits. The parameters input_size and output_size specify the resolutions of the input and output voxels. Valid settings are as follows:

Input resolution Output resolution Upsampling rate
64 256 x4
32 128 x4
32 256 x8
16 128 x8

GUI application

To launch UI for a pre-trained model, replace --data_content to the testing content shapes and replace --train with --ui.

python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --ui --gpu 0

Testing

These are examples for testing a model trained with 32 detailed chairs. For others, please change the commands accordingly.

Rough qualitative testing

To output a few detailization results (the first 16 content shapes x 32 styles) and a T-SNE embedding of the latent space:

python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --test --gpu 0

The output images can be found in folder samples.

IOU, LP, Div

To test Strict-IOU, Loose-IOU, LP-IOU, Div-IOU, LP-F-score, Div-F-score:

python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepvoxstyle --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepvox --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalvox --gpu 0

The first command prepares the patches in 64 detailed training shapes, thus --data_style is style_chair_64. Specifically, it removes duplicated patches in each detailed training shape and only keep unique patches for faster computation in the following testing procedure. The unique patches are written to folder unique_patches. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the folder unique_patches or make a symbolic link.

The second command runs the model and outputs the detailization results, in folder output_for_eval.

The third command evaluates the outputs. The results are written to folder eval_output ( result_IOU_mean.txt, result_LP_Div_Fscore_mean.txt, result_LP_Div_IOU_mean.txt ).

Cls-score

To test Cls-score:

python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepimgreal --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepimg --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalimg --gpu 0

The first command prepares rendered views of all content shapes, thus --data_content is content_chair_all. The rendered views are written to folder render_real_for_eval. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the folder render_real_for_eval or make a symbolic link.

The second command runs the model and outputs rendered views of the detailization results, in folder render_fake_for_eval.

The third command evaluates the outputs. The results are written to folder eval_output ( result_Cls_score.txt ).

FID

To test FID-all and FID-style, you need to first train a classification model on shapeNet. You can use the provided pre-trained weights here (Clsshapenet_128.pth and Clsshapenet_256.pth for 1283 and 2563 inputs).

Backup links:

In case you need to train your own model, modify shapenet_dir in evalFID.py and run:

python main.py --prepFIDmodel --output_size 128 --gpu 0
python main.py --prepFIDmodel --output_size 256 --gpu 0

After you have the pre-trained classifier, use the following commands:

python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepFIDreal --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepFID --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalFID --gpu 0

The first command computes the mean and sigma vectors for real shapes and writes to precomputed_real_mu_sigma_128_content_chair_all_num_style_16.hdf5. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the output hdf5 file or make a symbolic link.

The second command runs the model and outputs the detailization results, in folder output_for_FID.

The third command evaluates the outputs. The results are written to folder eval_output ( result_FID.txt ).

Owner
Zhiqin Chen
Video game addict.
Zhiqin Chen
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022