nnFormer: Interleaved Transformer for Volumetric Segmentation

Related tags

Deep LearningnnFormer
Overview

nnFormer: Interleaved Transformer for Volumetric Segmentation

Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please read our preprint at the following link: paper_address.

Parts of codes are borrowed from nn-UNet.


Installation

1、System requirements

This software was originally designed and run on a system running Ubuntu 18.01, with Python 3.6, PyTorch 1.8.1, and CUDA 10.1. For a full list of software packages and version numbers, see the Conda environment file environment.yml.

This software leverages graphical processing units (GPUs) to accelerate neural network training and evaluation; systems lacking a suitable GPU will likely take an extremely long time to train or evaluate models. The software was tested with the NVIDIA RTX 2080 TI GPU, though we anticipate that other GPUs will also work, provided that the unit offers sufficient memory.

2、Installation guide

We recommend installation of the required packages using the Conda package manager, available through the Anaconda Python distribution. Anaconda is available free of charge for non-commercial use through Anaconda Inc. After installing Anaconda and cloning this repository, For use as integrative framework:

git clone https://github.com/282857341/nnFormer.git
cd nnFormer
conda env create -f environment.yml
source activate nnFormer
pip install -e .

3、The main downloaded file directory description

  • ACDC_dice: Calculate dice of ACDC dataset

  • Synapse_dice_and_hd: Calulate dice of the Synapse dataset

  • dataset_json: About how to divide the training and test set

  • inference: The entry program of the infernece.

  • network_architecture: The models are stored here.

  • run: The entry program of the training.

  • training: The trainers are stored here, the training of the network is conducted by the trainer.


Training

1、Datasets

Datasets can be downloaded at the following links:

And the division of the dataset can be seen in the files in the ./dataset_json/

Dataset I ACDC

Dataset II The Synapse multi-organ CT dataset

2、Setting up the datasets

While we provide code to load data for training a deep-learning model, you will first need to download images from the above repositories. Regarding the format setting and related preprocessing of the dataset, we operate based on nnFormer, so I won’t go into details here. You can see nnUNet for specific operations.

Regarding the downloaded data, I will not introduce too much here, you can go to the corresponding website to view it. Organize the downloaded DataProcessed as follows:

./Pretrained_weight/
./nnFormer/
./DATASET/
  ├── nnFormer_raw/
      ├── nnFormer_raw_data/
          ├── Task01_ACDC/
              ├── imagesTr/
              ├── imagesTs/
              ├── labelsTr/
              ├── labelsTs/
              ├── dataset.json
          ├── Task02_Synapse/
              ├── imagesTr/
              ├── imagesTs/
              ├── labelsTr/
              ├── labelsTs/
              ├── dataset.json
      ├── nnFormer_cropped_data/
  ├── nnFormer_trained_models/
  ├── nnFormer_preprocessed/

After that, you can preprocess the data using:

nnFormer_convert_decathlon_task -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task01_ACDC
nnFormer_convert_decathlon_task -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task02_Synapse
nnFormer_plan_and_preprocess -t 1
nnFormer_plan_and_preprocess -t 2

3 Training and Testing the models

A. Use the best model we have trained to infer the test set
(1).Put the downloaded the best training weights in the specified directory.

the download link is

Link:https://pan.baidu.com/s/1h1h8_DKvve8enyTiIyzfHw 
Extraction code:yimv

The Google Drive link is as follows:

Link:https://drive.google.com/drive/folders/16y1QYOQD4vjrR2hh8TpPB-tq5EYX--Az?usp=sharing

the specified directory is

../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task001_ACDC/nnFormerTrainerV2_ACDC__nnFormerPlansv2.1/fold_0/model_best.model
../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task001_ACDC/nnFormerTrainerV2_ACDC__nnFormerPlansv2.1/fold_0/model_best.model.pkl

../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task002_Synapse/nnFormerTrainerV2_Synapse__nnFormerPlansv2.1/fold_0/model_best.model
../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task002_Synapse/nnFormerTrainerV2_Synapse__nnFormerPlansv2.1/fold_0/model_best.model.pkl
(2).Evaluating the models
  • ACDC

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/inferTs/output -m 3d_fullres -f 0 -t 1 -chk model_best -tr nnFormerTrainerV2_ACDC

Calculate DICE

python ./nnformer/ACDC_dice/inference.py
  • The Synapse multi-organ CT dataset

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output -m 3d_fullres -f 0 -t 2 -chk model_best -tr nnFormerTrainerV2_Synapse

Calculate DICE

python ./nnformer/Synapse_dice_and_hd/inference.py

The dice result will be saved in ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output

B. The complete process of retraining the model and inference
(1).Put the downloaded pre-training weights in the specified directory.

the download link is

Link:https://pan.baidu.com/s/1h1h8_DKvve8enyTiIyzfHw 
Extraction code:yimv

the specified directory is

../Pretrained_weight/pretrain_ACDC.model
../Pretrained_weight/pretrain_Synapse.model
(2).Training
  • ACDC
nnFormer_train 3d_fullres nnFormerTrainerV2_ACDC 1 0 
  • The Synapse multi-organ CT dataset
nnFormer_train 3d_fullres nnFormerTrainerV2_Synapse 2 0 
(3).Evaluating the models
  • ACDC

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/inferTs/output -m 3d_fullres -f 0 -t 1 -chk model_best -tr nnFormerTrainerV2_ACDC

Calculate DICE

python ./nnformer/ACDC_dice/inference.py
  • The Synapse multi-organ CT dataset

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output -m 3d_fullres -f 0 -t 2 -chk model_best -tr nnFormerTrainerV2_Synapse

Calculate DICE

python ./nnformer/Synapse_dice_and_hd/inference.py

The dice results will be saved in ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output

Owner
jsguo
jsguo
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023