nnFormer: Interleaved Transformer for Volumetric Segmentation

Related tags

Deep LearningnnFormer
Overview

nnFormer: Interleaved Transformer for Volumetric Segmentation

Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please read our preprint at the following link: paper_address.

Parts of codes are borrowed from nn-UNet.


Installation

1、System requirements

This software was originally designed and run on a system running Ubuntu 18.01, with Python 3.6, PyTorch 1.8.1, and CUDA 10.1. For a full list of software packages and version numbers, see the Conda environment file environment.yml.

This software leverages graphical processing units (GPUs) to accelerate neural network training and evaluation; systems lacking a suitable GPU will likely take an extremely long time to train or evaluate models. The software was tested with the NVIDIA RTX 2080 TI GPU, though we anticipate that other GPUs will also work, provided that the unit offers sufficient memory.

2、Installation guide

We recommend installation of the required packages using the Conda package manager, available through the Anaconda Python distribution. Anaconda is available free of charge for non-commercial use through Anaconda Inc. After installing Anaconda and cloning this repository, For use as integrative framework:

git clone https://github.com/282857341/nnFormer.git
cd nnFormer
conda env create -f environment.yml
source activate nnFormer
pip install -e .

3、The main downloaded file directory description

  • ACDC_dice: Calculate dice of ACDC dataset

  • Synapse_dice_and_hd: Calulate dice of the Synapse dataset

  • dataset_json: About how to divide the training and test set

  • inference: The entry program of the infernece.

  • network_architecture: The models are stored here.

  • run: The entry program of the training.

  • training: The trainers are stored here, the training of the network is conducted by the trainer.


Training

1、Datasets

Datasets can be downloaded at the following links:

And the division of the dataset can be seen in the files in the ./dataset_json/

Dataset I ACDC

Dataset II The Synapse multi-organ CT dataset

2、Setting up the datasets

While we provide code to load data for training a deep-learning model, you will first need to download images from the above repositories. Regarding the format setting and related preprocessing of the dataset, we operate based on nnFormer, so I won’t go into details here. You can see nnUNet for specific operations.

Regarding the downloaded data, I will not introduce too much here, you can go to the corresponding website to view it. Organize the downloaded DataProcessed as follows:

./Pretrained_weight/
./nnFormer/
./DATASET/
  ├── nnFormer_raw/
      ├── nnFormer_raw_data/
          ├── Task01_ACDC/
              ├── imagesTr/
              ├── imagesTs/
              ├── labelsTr/
              ├── labelsTs/
              ├── dataset.json
          ├── Task02_Synapse/
              ├── imagesTr/
              ├── imagesTs/
              ├── labelsTr/
              ├── labelsTs/
              ├── dataset.json
      ├── nnFormer_cropped_data/
  ├── nnFormer_trained_models/
  ├── nnFormer_preprocessed/

After that, you can preprocess the data using:

nnFormer_convert_decathlon_task -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task01_ACDC
nnFormer_convert_decathlon_task -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task02_Synapse
nnFormer_plan_and_preprocess -t 1
nnFormer_plan_and_preprocess -t 2

3 Training and Testing the models

A. Use the best model we have trained to infer the test set
(1).Put the downloaded the best training weights in the specified directory.

the download link is

Link:https://pan.baidu.com/s/1h1h8_DKvve8enyTiIyzfHw 
Extraction code:yimv

The Google Drive link is as follows:

Link:https://drive.google.com/drive/folders/16y1QYOQD4vjrR2hh8TpPB-tq5EYX--Az?usp=sharing

the specified directory is

../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task001_ACDC/nnFormerTrainerV2_ACDC__nnFormerPlansv2.1/fold_0/model_best.model
../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task001_ACDC/nnFormerTrainerV2_ACDC__nnFormerPlansv2.1/fold_0/model_best.model.pkl

../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task002_Synapse/nnFormerTrainerV2_Synapse__nnFormerPlansv2.1/fold_0/model_best.model
../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task002_Synapse/nnFormerTrainerV2_Synapse__nnFormerPlansv2.1/fold_0/model_best.model.pkl
(2).Evaluating the models
  • ACDC

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/inferTs/output -m 3d_fullres -f 0 -t 1 -chk model_best -tr nnFormerTrainerV2_ACDC

Calculate DICE

python ./nnformer/ACDC_dice/inference.py
  • The Synapse multi-organ CT dataset

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output -m 3d_fullres -f 0 -t 2 -chk model_best -tr nnFormerTrainerV2_Synapse

Calculate DICE

python ./nnformer/Synapse_dice_and_hd/inference.py

The dice result will be saved in ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output

B. The complete process of retraining the model and inference
(1).Put the downloaded pre-training weights in the specified directory.

the download link is

Link:https://pan.baidu.com/s/1h1h8_DKvve8enyTiIyzfHw 
Extraction code:yimv

the specified directory is

../Pretrained_weight/pretrain_ACDC.model
../Pretrained_weight/pretrain_Synapse.model
(2).Training
  • ACDC
nnFormer_train 3d_fullres nnFormerTrainerV2_ACDC 1 0 
  • The Synapse multi-organ CT dataset
nnFormer_train 3d_fullres nnFormerTrainerV2_Synapse 2 0 
(3).Evaluating the models
  • ACDC

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/inferTs/output -m 3d_fullres -f 0 -t 1 -chk model_best -tr nnFormerTrainerV2_ACDC

Calculate DICE

python ./nnformer/ACDC_dice/inference.py
  • The Synapse multi-organ CT dataset

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output -m 3d_fullres -f 0 -t 2 -chk model_best -tr nnFormerTrainerV2_Synapse

Calculate DICE

python ./nnformer/Synapse_dice_and_hd/inference.py

The dice results will be saved in ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output

Owner
jsguo
jsguo
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022