[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

Overview

TransFusion-Pose

TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation
Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei Liu, Hao Tang, Xiangyi Yan, Yusheng Xie, Shih-Yao Lin and Xiaohui Xie
In BMVC 2021
[Paper] [Video]

Overview

  • We propose the TransFusion, which apply the transformer architecture to multi-view 3D human pose estimation
  • We propose the Epipolar Field, a novel and more general form of epipolar line. It readily integrates with the transformer through our proposed geometry positional encoding to encode the 3D relationships among different views.
  • Extensive experiments are conducted to demonstrate that our TransFusion outperforms previous fusion methods on both Human 3.6M and SkiPose datasets, but requires substantially fewer parameters.

TransFusion

Epipolar Field

Installation

  1. Clone this repo, and we'll call the directory that you cloned multiview-pose as ${POSE_ROOT}
git clone https://github.com/HowieMa/TransFusion-Pose.git
  1. Install dependencies.
pip install -r requirements.txt
  1. Download TransPose models pretrained on COCO.
wget https://github.com/yangsenius/TransPose/releases/download/Hub/tp_r_256x192_enc3_d256_h1024_mh8.pth

You can also download it from the official website of TransPose

Please download them under ${POSE_ROOT}/models, and make them look like this:

${POSE_ROOT}/models
└── pytorch
    └── coco
        └── tp_r_256x192_enc3_d256_h1024_mh8.pth

Data preparation

Human 3.6M

For Human36M data, please follow H36M-Toolbox to prepare images and annotations.

Ski-Pose

For Ski-Pose, please follow the instruction from their website to obtain the dataset.
Once you download the Ski-PosePTZ-CameraDataset-png.zip and ski_centers.csv, unzip them and put into the same folder, named as ${SKI_ROOT}.
Run python data/preprocess_skipose.py ${SKI_ROOT} to format it.

Your folder should look like this:

${POSE_ROOT}
|-- data
|-- |-- h36m
    |-- |-- annot
        |   |-- h36m_train.pkl
        |   |-- h36m_validation.pkl
        |-- images
            |-- s_01_act_02_subact_01_ca_01 
            |-- s_01_act_02_subact_01_ca_02

|-- |-- preprocess_skipose.py
|-- |-- skipose  
    |-- |-- annot
        |   |-- ski_train.pkl
        |   |-- ski_validation.pkl
        |-- images
            |-- seq_103 
            |-- seq_103

Training and Testing

Human 3.6M

# Training
python run/pose2d/train.py --cfg experiments-local/h36m/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3

# Evaluation (2D)
python run/pose2d/valid.py --cfg experiments-local/h36m/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3  

# Evaluation (3D)
python run/pose3d/estimate_tri.py --cfg experiments-local/h36m/transpose/256_fusion_enc3_GPE.yaml

Ski-Pose

# Training
python run/pose2d/train.py --cfg experiments-local/skipose/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3

# Evaluation (2D)
python run/pose2d/valid.py --cfg experiments-local/skipose/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3

# Evaluation (3D)
python run/pose3d/estimate_tri.py --cfg experiments-local/skipose/transpose/256_fusion_enc3_GPE.yaml

Our trained models can be downloaded from here

Citation

If you find our code helps your research, please cite the paper:

@inproceedings{ma2021transfusion,
  title={TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation},
  author={Ma, Haoyu and Chen, Liangjian and Kong, Deying and Wang, Zhe and Liu, Xingwei and Tang, Hao and Yan, Xiangyi and Xie, Yusheng and Lin, Shih-Yao and Xie, Xiaohui},
  booktitle={British Machine Vision Conference},
  year={2021}
}

Acknowledgement

Owner
Haoyu Ma
3rd year CS Ph.D. @ UC, Irvine
Haoyu Ma
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021