[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

Overview

TransFusion-Pose

TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation
Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei Liu, Hao Tang, Xiangyi Yan, Yusheng Xie, Shih-Yao Lin and Xiaohui Xie
In BMVC 2021
[Paper] [Video]

Overview

  • We propose the TransFusion, which apply the transformer architecture to multi-view 3D human pose estimation
  • We propose the Epipolar Field, a novel and more general form of epipolar line. It readily integrates with the transformer through our proposed geometry positional encoding to encode the 3D relationships among different views.
  • Extensive experiments are conducted to demonstrate that our TransFusion outperforms previous fusion methods on both Human 3.6M and SkiPose datasets, but requires substantially fewer parameters.

TransFusion

Epipolar Field

Installation

  1. Clone this repo, and we'll call the directory that you cloned multiview-pose as ${POSE_ROOT}
git clone https://github.com/HowieMa/TransFusion-Pose.git
  1. Install dependencies.
pip install -r requirements.txt
  1. Download TransPose models pretrained on COCO.
wget https://github.com/yangsenius/TransPose/releases/download/Hub/tp_r_256x192_enc3_d256_h1024_mh8.pth

You can also download it from the official website of TransPose

Please download them under ${POSE_ROOT}/models, and make them look like this:

${POSE_ROOT}/models
└── pytorch
    └── coco
        └── tp_r_256x192_enc3_d256_h1024_mh8.pth

Data preparation

Human 3.6M

For Human36M data, please follow H36M-Toolbox to prepare images and annotations.

Ski-Pose

For Ski-Pose, please follow the instruction from their website to obtain the dataset.
Once you download the Ski-PosePTZ-CameraDataset-png.zip and ski_centers.csv, unzip them and put into the same folder, named as ${SKI_ROOT}.
Run python data/preprocess_skipose.py ${SKI_ROOT} to format it.

Your folder should look like this:

${POSE_ROOT}
|-- data
|-- |-- h36m
    |-- |-- annot
        |   |-- h36m_train.pkl
        |   |-- h36m_validation.pkl
        |-- images
            |-- s_01_act_02_subact_01_ca_01 
            |-- s_01_act_02_subact_01_ca_02

|-- |-- preprocess_skipose.py
|-- |-- skipose  
    |-- |-- annot
        |   |-- ski_train.pkl
        |   |-- ski_validation.pkl
        |-- images
            |-- seq_103 
            |-- seq_103

Training and Testing

Human 3.6M

# Training
python run/pose2d/train.py --cfg experiments-local/h36m/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3

# Evaluation (2D)
python run/pose2d/valid.py --cfg experiments-local/h36m/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3  

# Evaluation (3D)
python run/pose3d/estimate_tri.py --cfg experiments-local/h36m/transpose/256_fusion_enc3_GPE.yaml

Ski-Pose

# Training
python run/pose2d/train.py --cfg experiments-local/skipose/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3

# Evaluation (2D)
python run/pose2d/valid.py --cfg experiments-local/skipose/transpose/256_fusion_enc3_GPE.yaml --gpus 0,1,2,3

# Evaluation (3D)
python run/pose3d/estimate_tri.py --cfg experiments-local/skipose/transpose/256_fusion_enc3_GPE.yaml

Our trained models can be downloaded from here

Citation

If you find our code helps your research, please cite the paper:

@inproceedings{ma2021transfusion,
  title={TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation},
  author={Ma, Haoyu and Chen, Liangjian and Kong, Deying and Wang, Zhe and Liu, Xingwei and Tang, Hao and Yan, Xiangyi and Xie, Yusheng and Lin, Shih-Yao and Xie, Xiaohui},
  booktitle={British Machine Vision Conference},
  year={2021}
}

Acknowledgement

Owner
Haoyu Ma
3rd year CS Ph.D. @ UC, Irvine
Haoyu Ma
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023