Moscow DEG 2021 elections plots

Overview

Построение графиков на основе публичных данных о ДЭГ в Москве в 2021г.

Описание

Скрипты в данном репозитории позволяют собственноручно построить графики распределения голосов избирателей по времени на основе публичных данных от системы Дистанционного Электронного Голосования Москвы для выборов в Государственную Думу 2021 года. Получаемые графики не учитывают переголосования, так как на настощий момент на основе публичных данных разделить бюллетени проголосовавшие единожды и переголосовавшие невозможно. Дополнительно можно построить распределение электронной "явки" по номеру блока регистрации избирателей, где также наблюдаются аномалии.

Для кого предназначено это руководство

Для людей которые хотели бы собственноручно проанализировать публично доступные данные о дистанционном голосовании, но не обладают достаточным техническим уровнем или желанием разбираться для полностью самостоятельного разворачивания базы данных. Соответственно инструкция написана максимально подробно, насколько это возможно. Руководство разделено на установку (выполняется однажды) и собственно построение графиков.

Установка

Система

Скрипты для построения графиков не должны зависеть от ОС, но на настоящий момент протестированы только под Linux. Установочные скрипты и инструкции рассчитаны на использование дистрибутивов Debian или Ubuntu. Для работы из под Windows или macOS (а для повышения безопасности и под Linux) рекомендуется воспользоваться виртуальной машиной с Ubuntu 20.04. Подойдёт например VirtualBox с вот этим образом. Установка VirtualBox достаточно проста, при необходимости инструкцию легко найти. Для подключения образа достаточно его распаковать, выполнить "Файл"-"Импорт конфигураций" и выбрать распакованный файл ova. После завершения импорта в настройках созданной виртуалки в разделе "Сеть" рекомендуется сменить тип подключения на NAT, при наличии достаточных ресурсов рекомендуется увеличить объём оперативной памяти до 8 ГБайт, остальные параметры можно оставить по-умолчанию. Системный пароль в виртуалке по ссылке выше - "ubuntu".

Клонирование репозитория и получение SQL-дампа

Для получения файлов из данного репозитория необходимо установить git и выполнить клонирование. Для этого необходимо открыть терминал (в Ubuntu нажать Activities, набрать term и нажать Enter) и выполнить в нем:

sudo apt update && sudo apt install -y git
git clone https://github.com/50000-Quaoar/election2021_msk

Для работы также понадобится дамп базы данных голосования, скачать который можно с сайта https://observer.mos.ru . Например данные по одномандатным округам доступны на этой странице, кнопка "Скачать sql dump". Если используете виртуальную машину - скачивайте сразу из неё. Данные по партийным спискам здесь.

Update: observer.mos.ru в последнее время тормозит и дампы могут скачаться битыми. Правильные дампы для голосований в Госдуму имеют в запакованном состоянии размер больше 3 ГБайт. Точно корректность дампа можно проверить следующим образом (займет несколько минут):

gunzip -kc observer-20210927_233000.sql.gz | sha256sum

SHA256 чексумма для распакованного дампа одномандатников: af3ca1f9002a7bc92065fd696e642fca84691dff7a3d8ee5165c009513082c66, а для партийных списков: 63f0cea15928ed31b1dceaaa74d2651fd901be17624bd2435ea925037fa3abec . В теории дампы после 19.09 меняться не должны, соответственно их чексуммы тоже.

Установка зависимостей и импорт базы данных

Для установки зависимостей выполнить в терминале:

cd election2021_msk/install
./install_ubuntu.sh

Для импорта базы данных в том же терминале исполняем:

./import_db.sh /home/ubuntu/Downloads/observer-20210921_143000.sql.gz v2021_om

, где /home/ubuntu/Downloads/observer-20210921_143000.sql.gz - путь до скачанного дампа базы данных, а v2021_om - желаемое имя базы данных. В зависимости от производительности вашего компьютера и ресурсов виртуалки импорт может занять от нескольких минут до ~2 часов. Терминал не закрываем. Если помимо одномандатников есть желание анализировать и другие голосования (партийные списки, Мосгордума), то необходимо эту операцию повторить с другим именем файла и названием базы.

Дорасшифровывание бюллетеней

В публично доступной на https://observer.mos.ru базе данных расшифровывание бюллетеней не была произведено до конца (подробности см. например в статье на Хабре на тему ДЭГ). Чтобы исправить это прискорбное недоразумение необходимо выполнить:

cd ..
./decrypt_ballots.py --dbname v2021_om

, где v2021_om - выбранное имя базы данных. В зависимости от производительности вашего компьютера и ресурсов виртуалки расшифровывание может занять вплоть до нескольких часов. После завершения расшифровки база данных готова к использованию и можно переходить к построению графиков и анализу данных. Строить графики можно и без дорасшифровывания или не дожидаясь его завершения, но тогда часть голосов не будет учтена. Если анализируете несколько баз, то надо дорасшифровывать их все.

Построение графиков

Для построения графика распределения голосов по времени достаточно вызвать в терминале:

./time_plot.py -c plot-config.json --dbname v2021_om

, где plot-config.json - JSON файл с конфигурацией желаемого графика (по-умолчанию plot-config.json), а v2021_om - название базы данных. Полный help можно получить выполнив:

./time_plot.py -h

Для построения графика явки в зависимости от номера блока регистрации избирателей:

./turnout_plot.py --dbname v2021_om

, где v2021_om - название базы данных, других параметров не требуется.

Выбор данных для построения графика распределения по времени

Параметры графиков задаются в виде текстовых JSON-файлов. Параметр minutes_in_bin задаёт число минут на каждую точку по оси X (рекомендуемые значения от 10 до 60). Параметр minutes_per_axis_tick - частоту подписей времени по X. Параметр percentage выбирает отображать ли на графике абсолютное количество голосов (false) или процент голосов в данном временном интервале каждого отдельного кандидата от всех кандидатов на графике (true). Параметр integrate позволяет отобразить сумму (true) всех голосов за кандидата к текущему моменту.

Наконец наиболее важный параметр candidates_to_plot задаёт список (в квадратных скобках) ID кандидатов, которых необходимо отобразить на графике. ID интересующего вас кандидата можно узнать запустив time_plot.py с опцией -l номер_округа. Например:

./time_plot.py -l 198

выведет список кандидатов в 198 округе, а для получения полного списка используйте опцию -l 0.

Время построения каждого графика обычно не превышает пары минут.

Примеры JSON-файлов

В репозитории представлено несколько JSON файлов для примера графиков по одномандатным округам: 198_perc.json - процентное распределение голосов по времени за всех кандидатов по 198 округу; 198_integral.json - полное количество голосов к ка времени за всех кандидатов по 198 округу; 208_abs.json - распределение голосов по времени за всех кандидатов по 208 округу; sobyanin_list.json - распределение голосов по времени за всех "административных" кандидатов по всем округам Москвы, позволяет проследить схожесть динамики набора голосов, в частности т.н. "перерыв на обед" в воскресенье днем; obed.json - распределение голосов по времени за трех административных кандидатов по разным округам и трех их основных конкурентов, позволяет проследить отличие в динамике числа голосов за административных и опозиционных кандидатов, в особенности в воскресенье (стремительное набор голосов за административных в 6:30 утра, отсутствие "обеда" у опозиционных голосов и резкое снижение административных после 14:30); party.json - распределение голосов по времени по партийным спискам, обед у ЕР присутствует;

Примеры графиков

Графики для конфигураций описанных выше, некоторые приближены для наглядности.

198_perc.json

alt text

198_integral.json

alt text

208_abs.json

alt text

sobyanin_list.json

alt text

obed.json

alt text

party.json

alt text

198_perc.json нормированный на официальные результаты

alt text

turnout_plot.py для одномандатных округов

alt text

TODO

  • Добавить построение других типов графиков.
  • Ускорить расшифрование.
  • Замечания и вопросы приветствуются :).
Visualize large time-series data in plotly

plotly_resampler enables visualizing large sequential data by adding resampling functionality to Plotly figures. In this Plotly-Resampler demo over 11

PreDiCT.IDLab 604 Dec 28, 2022
Simulation du problème de Monty Hall avec Python et matplotlib

Le problème de Monty Hall C'est un jeu télévisé où il y a trois portes sur le plateau de jeu. Seule une de ces portes cache un trésor. Il n'y a rien d

ETCHART YANG 1 Jan 06, 2022
A Python package for caclulations and visualizations in geological sciences.

geo_calcs A Python package for caclulations and visualizations in geological sciences. Free software: MIT license Documentation: https://geo-calcs.rea

Drew Heasman 1 Jul 12, 2022
Parse Robinhood 1099 Tax Document from PDF into CSV

Robinhood 1099 Parser This project converts Robinhood Securities 1099 tax document from PDF to CSV file. This tool will be helpful for those who need

Keun Tae (Kevin) Park 52 Jun 10, 2022
https://there.oughta.be/a/macro-keyboard

inkkeys Details and instructions can be found on https://there.oughta.be/a/macro-keyboard In contrast to most of my other projects, I decided to put t

Sebastian Staacks 209 Dec 21, 2022
This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played till Jan 2022.

Scraping-test-matches-data This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played ti

Souradeep Banerjee 4 Oct 10, 2022
This is a place where I'm playing around with pandas to analyze data in a csv/excel file.

pandas-csv-excel-analysis This is a place where I'm playing around with pandas to analyze data in a csv/excel file. 0-start A very simple cheat sheet

Chuqin 3 Oct 05, 2022
Investment and risk technologies maintained by Fortitudo Technologies.

Fortitudo Technologies Open Source This package allows you to freely explore open-source implementations of some of our fundamental technologies under

Fortitudo Technologies 11 Dec 14, 2022
Draw tree diagrams from indented text input

Draw tree diagrams This repository contains two very different scripts to produce hierarchical tree diagrams like this one: $ ./classtree.py collectio

Luciano Ramalho 8 Dec 14, 2022
Automate the case review on legal case documents and find the most critical cases using network analysis

Automation on Legal Court Cases Review This project is to automate the case review on legal case documents and find the most critical cases using netw

Yi Yin 7 Dec 28, 2022
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

Bhargav Chippada 227 Jan 05, 2023
A Jupyter - Leaflet.js bridge

ipyleaflet A Jupyter / Leaflet bridge enabling interactive maps in the Jupyter notebook. Usage Selecting a basemap for a leaflet map: Loading a geojso

Jupyter Widgets 1.3k Dec 27, 2022
Python package that generates hardware pinout diagrams as SVG images

PinOut A Python package that generates hardware pinout diagrams as SVG images. The package is designed to be quite flexible and works well for general

336 Dec 20, 2022
DrawBot lets you draw images taken from the internet on Skribbl.io, Gartic Phone and Paint

DrawBot You don't speak french? No worries, english translation is over here. C'est quoi ? DrawBot est un logiciel codé par V2F qui va prendre possess

V2F 205 Jan 01, 2023
This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

Isaac 4 Dec 14, 2021
A small timeseries transformation API built on Flask and Pandas

#Mcflyin ###A timeseries transformation API built on Pandas and Flask This is a small demo of an API to do timeseries transformations built on Flask a

Rob Story 84 Mar 25, 2022
Python script for writing text on github contribution chart.

Github Contribution Drawer Python script for writing text on github contribution chart. Requirements Python 3.X Getting Started Create repository Put

Steven 0 May 27, 2022
A central task in drug discovery is searching, screening, and organizing large chemical databases

A central task in drug discovery is searching, screening, and organizing large chemical databases. Here, we implement clustering on molecular similarity. We support multiple methods to provide a inte

NVIDIA Corporation 124 Jan 07, 2023
daily report of @arkinvest ETF activity + data collection

ark_invest daily weekday report of @arkinvest ETF activity + data collection This script was created to: Extract and save daily csv's from ARKInvest's

T D 27 Jan 02, 2023
Official Matplotlib cheat sheets

Official Matplotlib cheat sheets

Matplotlib Developers 6.7k Jan 09, 2023