(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

Overview

NeRF--: Neural Radiance Fields Without Known Camera Parameters

Project Page | Arxiv | Colab Notebook | Data

Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min Chen³, Victor Adrian Prisacariu¹.

¹Active Vision Lab + ²Visual Geometry Group + ³e-Research Centre, University of Oxford.

Overview

We provide 3 training targets in this repository, under the tasks directory:

  1. task/nerfmm/train.py: This is our main training script for the NeRF-LLFF dataset, which estimates camera poses, focal lenghts and a NeRF jointly and monitors the absolute trajectory error (ATE) between our estimation of camera parameters and COLMAP estimation during training. This target can also start training from a COLMAP initialisation and refine the COLMAP camera parameters.
  2. task/refine_nerfmm/train.py: This is the training script that refines a pretrained nerfmm system.
  3. task/any_folder/train.py: This is a training script that takes a folder that contains forward-facing images and trains with our nerfmm system without making any comparison with COLMAP. It is similar to what we offer in our CoLab notebook and we treat this any_folder target as a playgraound, where users can try novel view synthesis by just providing an image folder and do not care how the camera parameter estimation compares with COLMAP.

For each target, we provide relevant utilities to evaluate our system. Specifically,

  • for the nerfmm target, we provide three utility files:
    • eval.py to evaluate image rendering quality on validation splits with PSNR, SSIM and LPIPS, i.e, results in Table 1.
    • spiral.py to render novel views using a spiral camera trajectory, i.e. results in Figure 1.
    • vis_learned_poses.py to visualise our camera parameter estimation with COLMAP estimation in 3D. It also computes ATE between them, i.e. E1 in Table 2.
  • for the refine_nerfmm target, all utilities in nerfmm target above are compatible with refine_nerfmm target, since it just refines a pretrained nerfmm system.
  • for the any_folder target, it has its own spiral.py and vis_learned_poses.py utilities, as it does not compare with COLMAP. It does not have a eval.py file as this target is treated as a playground and does not split images to train/validation sets. It only provides novel view synthesis results via the spiral.py file.

Table of Content

Environment

We provide a requirement.yml file to set up a conda environment:

git clone https://github.com/ActiveVisionLab/nerfmm.git
cd nerfmm
conda env create -f environment.yml

Generally, our code should be able to run with any pytorch >= 1.1 .

(Optional) Install open3d for visualisation. You might need a physical monitor to install this lib.

pip install open3d

Get Data

We use the NeRF-LLFF dataset with two small structural changes:

  1. We remove their image_4 and image_8 folder and downsample images to any desirable resolution during data loading dataloader/with_colmap.py, by calling PyTorch's interpolate function.
  2. We explicitly generate two txt files for train/val image ids. i.e. take every 8th image as the validation set, as in the official NeRF train/val split. The only difference is that we store them as txt files while NeRF split them during data loading. The file produces these two txt files is utils/split_dataset.py.

In addition to the NeRF-LLFF dataset, we provide two demo scenes to demonstrate how to use the any_folder target.

We pack the re-structured LLFF data and our data to a tar ball (~1.8G), to get it, run:

wget https://www.robots.ox.ac.uk/~ryan/nerfmm2021/nerfmm_release_data.tar.gz

Untar the data:

tar -xzvf path/to/the/tar.gz

Training

We show how to:

  1. train a nerfmm from scratch, i.e. initialise camera poses with identity matrices and focal lengths with image resolution:
    python tasks/nerf/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='LLFF/fern'
  2. train a nerfmm from COLMAP initialisation:
    python tasks/nerf/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='LLFF/fern' \
    --start_refine_pose_epoch=1000 \
    --start_refine_focal_epoch=1000
    This command initialises a nerfmm target with COLMAP parameters, trains with them for 1000 epochs, and starts refining those parameters after 1000 epochs.
  3. train a nerfmm from a pretrained nerfmm:
    python tasks/refine_nerfmm/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='LLFF/fern' --start_refine_epoch=1000 \
    --ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'
    This command initialises a refine_nerfmm target with a set of pretrained nerfmm parameters, trains with them for 1000 epochs, and starts refining those parameters after 1000 epochs.
  4. train an any_folder from scratch given an image folder:
    python tasks/any_folder/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='any_folder_demo/desk'
    This command trains an any_folder target using a provided demo scene desk.

(Optional) set a symlink to the downloaded data:

mkdir data_dir  # do it in this nerfmm repo
cd data_dir
ln -s /path/to/downloaded/data ./nerfmm_release_data
cd ..

this can simplify the above training commands, for example:

python tasks/nerfmm/train.py

Evaluation

Compute image quality metrics

Call eval.py in nerfmm target:

python tasks/nerfmm/eval.py \
--base_dir='path/to/nerfmm_release/data' \
--scene_name='LLFF/fern' \
--ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'

This file can be used to evaluate a checkpoint trained with refine_nerfmm target. For some scenes, you might need to tweak with --opt_eval_lr option to get the best results. Common values for opt_eval_lr are 0.01 / 0.005 / 0.001 / 0.0005 / 0.0001. The default value is 0.001. Overall, it finds validation poses that can produce highest PSNR on validation set while freezing NeRF and focal lengths. We do this because the learned camera pose space is different from the COLMAP estimated camera pose space.

Render novel views

Call spiral.py in each target. The spiral.py in nerfmm is compatible with refine_nerfmm target:

python spiral.py \
--base_dir='path/to/nerfmm_release/data' \
--scene_name='LLFF/fern' \
--ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'

Visualise estimated poses in 3D

Call vis_learned_poses.py in each target. The vis_learned_poses.py in nerfmm is compatible with refine_nerfmm target:

python spiral.py \
--base_dir='path/to/nerfmm_release/data' \
--scene_name='LLFF/fern' \
--ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'

Acknowledgement

Shangzhe Wu is supported by Facebook Research. Weidi Xie is supported by Visual AI (EP/T028572/1).

The authors would like to thank Tim Yuqing Tang for insightful discussions and proofreading.

During our NeRF implementation, we referenced several open sourced NeRF implementations, and we thank their contributions. Specifically, we referenced functions from nerf and nerf-pytorch, and borrowed/modified code from nerfplusplus and nerf_pl. We especially appreciate the detailed code comments and git issue answers in nerf_pl.

Citation

@article{wang2021nerfmm,
  title={Ne{RF}$--$: Neural Radiance Fields Without Known Camera Parameters},
  author={Zirui Wang and Shangzhe Wu and Weidi Xie and Min Chen and Victor Adrian Prisacariu},
  journal={arXiv preprint arXiv:2102.07064},
  year={2021}
}
Owner
Active Vision Laboratory
Active Vision Laboratory
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022