Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Overview

Change is Everywhere
Single-Temporal Supervised Object Change Detection
in Remote Sensing Imagery

by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei Zhong

[Paper] [BibTeX]



This is an official implementation of STAR and ChangeStar in our ICCV 2021 paper Change is Everywhere: Single-Temporal Supervised Object Change Detection for High Spatial Resolution Remote Sensing Imagery.

We hope that STAR will serve as a solid baseline and help ease future research in weakly-supervised object change detection.


News

  • 2021/08/28, The code is available.
  • 2021/07/23, The code will be released soon.
  • 2021/07/23, This paper is accepted by ICCV 2021.

Features

  • Learning a good change detector from single-temporal supervision.
  • Strong baselines for bitemporal and single-temporal supervised change detection.
  • A clean codebase for weakly-supervised change detection.
  • Support both bitemporal and single-temporal supervised settings

Citation

If you use STAR or ChangeStar (FarSeg) in your research, please cite the following paper:

@inproceedings{zheng2021change,
  title={Change is Everywhere: Single-Temporal Supervised Object Change Detection for High Spatial Resolution Remote Sensing Imagery},
  author={Zheng, Zhuo and Ma, Ailong and Liangpei Zhang and Zhong, Yanfei},
  booktitle={Proceedings of the IEEE international conference on computer vision},
  pages={},
  year={2021}
}

@inproceedings{zheng2020foreground,
  title={Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery},
  author={Zheng, Zhuo and Zhong, Yanfei and Wang, Junjue and Ma, Ailong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={4096--4105},
  year={2020}
}

Getting Started

Install EVer

pip install --upgrade git+https://github.com/Z-Zheng/ever.git

Requirements:

  • pytorch >= 1.6.0
  • python >=3.6

Prepare Dataset

  1. Download xView2 dataset (training set and tier3 set) and LEVIR-CD dataset.

  2. Create soft link

ln -s </path/to/xView2> ./xView2
ln -s </path/to/LEVIR-CD> ./LEVIR-CD

Training and Evaluation under Single-Temporal Supervision

bash ./scripts/trainxView2/r50_farseg_changemixin_symmetry.sh

Training and Evaluation under Bitemporal Supervision

bash ./scripts/bisup_levircd/r50_farseg_changemixin.sh

License

ChangeStar is released under the Apache License 2.0.

Copyright (c) Zhuo Zheng. All rights reserved.

Comments
  • Can ChangeStar be used for general CD?

    Can ChangeStar be used for general CD?

    hi,

    Thanks for the great work. I wonder, can this work be used for general change detection? i.e., multi-class not just single class.

    If yes, do you have done the experiments? Thanks!

    opened by Richardych 3
  • hello, how to add changemixin when use bitemporal supervised

    hello, how to add changemixin when use bitemporal supervised

    hello I have question about your repo:

    1. how to add changeminxin when use bitemporal supervised, i see it in your paper table 4 but i cant find in codes?
    2. could changestar use LEVIR-CD train Single-Temporal(another dataset is too big for train, i cant download it)
    3. are your bitemporal suprvised methods just use torch.cat in the final layer? sorry for ask these question,
    opened by csliuchang 3
  • ValueError: Requested crop size (512, 512) is larger than the image size (384, 384)

    ValueError: Requested crop size (512, 512) is larger than the image size (384, 384)

    Traceback (most recent call last): File "./train_sup_change.py", line 48, in blob = trainer.run(after_construct_launcher_callbacks=[register_evaluate_fn]) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/ever/api/trainer/th_amp_ddp_trainer.py", line 117, in run test_data_loader=kw_dataloader['testdata_loader']) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/ever/core/launcher.py", line 232, in train_by_config signal_loss_dict = self.train_iters(train_data_loader, test_data_loader=test_data_loader, **config) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/ever/core/launcher.py", line 174, in train_iters is_master=self._master) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/ever/core/iterator.py", line 30, in next data = next(self._iterator) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 435, in next data = self._next_data() File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 475, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/utils/data/dataset.py", line 218, in getitem return self.datasets[dataset_idx][sample_idx] File "/home/yujianzhi/tem/ChangeStar-master/data/levir_cd/dataset.py", line 30, in getitem blob = self.transforms(**dict(image=imgs, mask=gt)) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/albumentations/core/composition.py", line 191, in call data = t(force_apply=force_apply, **data) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/albumentations/core/transforms_interface.py", line 90, in call return self.apply_with_params(params, **kwargs) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/albumentations/core/transforms_interface.py", line 103, in apply_with_params res[key] = target_function(arg, **dict(params, **target_dependencies)) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/albumentations/augmentations/crops/transforms.py", line 48, in apply return F.random_crop(img, self.height, self.width, h_start, w_start) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/albumentations/augmentations/crops/functional.py", line 28, in random_crop crop_height=crop_height, crop_width=crop_width, height=height, width=width ValueError: Requested crop size (512, 512) is larger than the image size (384, 384) Traceback (most recent call last): File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/distributed/launch.py", line 260, in main() File "/home/yujianzhi/anaconda3/envs/CStar/lib/python3.7/site-packages/torch/distributed/launch.py", line 256, in main cmd=cmd) subprocess.CalledProcessError: Command '['/home/yujianzhi/anaconda3/envs/CStar/bin/python', '-u', './train_sup_change.py', '--local_rank=0', '--config_path=levircd.r50_farseg_changestar_bisup', '--model_dir=./log/bisup-LEVIRCD/r50_farseg_changestar']' returned non-zero exit status 1.

    it says: ValueError: Requested crop size (512, 512) is larger than the image size (384, 384) but my img is 512*512 exactly.

    opened by themoongodyue 3
  • How to get the bitemporal images' labels if the model is trained on LEVIR-CD dataset?

    How to get the bitemporal images' labels if the model is trained on LEVIR-CD dataset?

    Hello, I'm very interested in your work, but I encountered a problem in the process of research. If the model is trained on the LEVIR-CD dataset, how to obtain the changed labels when there are no segmentation maps for each bitemporal image in the dataset? I would appreciate it if you could solve my problems.

    opened by SONGLEI-arch 2
  • Reproduction Problem

    Reproduction Problem

    Hello author.

    Your work is great!

    But I ran into a problem while running your code.

    The performance came as shown in the picture below, but this number is much higher than the number in table1 of your paper. (IoU) Can you tell me the reason? Screen Shot 2022-01-01 at 7 44 17 PM

    All hyperparameters and data are identical.

    opened by seominseok0429 1
  • AssertionError error

    AssertionError error

    Hello, this is really great work. I have one question for you. The LEVIR-CD dataset trains well, but the xview2 dataset gives the following unknown error.

    Do you have any idea how to fix it? All processes follow the recipe exactly Screen Shot 2021-12-31 at 4 57 41 PM .

    opened by seominseok0429 1
  • RuntimeError: NCCL error in: /pytorch/torch/lib/c10d/ProcessGroupNCCL.cpp:911, unhandled system error, NCCL version 2.7.8

    RuntimeError: NCCL error in: /pytorch/torch/lib/c10d/ProcessGroupNCCL.cpp:911, unhandled system error, NCCL version 2.7.8

    i have crazy,help me please

    Traceback (most recent call last): File "./train_sup_change.py", line 48, in blob = trainer.run(after_construct_launcher_callbacks=[register_evaluate_fn]) File "/home/cy/miniconda3/envs/STAnet/lib/python3.8/site-packages/ever/api/trainer/th_amp_ddp_trainer.py", line 98, in run kwargs.update(dict(model=self.make_model())) File "/home/cy/miniconda3/envs/STAnet/lib/python3.8/site-packages/ever/api/trainer/th_amp_ddp_trainer.py", line 87, in make_model model = nn.parallel.DistributedDataParallel( File "/home/cy/miniconda3/envs/STAnet/lib/python3.8/site-packages/torch/nn/parallel/distributed.py", line 496, in init dist._verify_model_across_ranks(self.process_group, parameters) RuntimeError: NCCL error in: /pytorch/torch/lib/c10d/ProcessGroupNCCL.cpp:911, unhandled system error, NCCL version 2.7.8 ncclSystemError: System call (socket, malloc, munmap, etc) failed. ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 31335) of binary: /home/cy/miniconda3/envs/STAnet/bin/python ERROR:torch.distributed.elastic.agent.server.local_elastic_agent:[default] Worker group failed

    opened by themoongodyue 1
  • Evaluation

    Evaluation

    Excuse me, I want to know how this module behave inference after training the model. And if you can offer an link for usage of 'ever' Lib, that will be fantastic

    opened by LIUZIJING-CHN 1
  • changestar_sisup results

    changestar_sisup results

    Hi, I have trained the model under single-temporal supervision, but the F1 result is only 0.73,which is worse than the result in your paper. Is there anything wrong with my experiment, below is my training log:

    1666753326.225779.log

    After training I only test the LEVIR-CD test set.

    opened by max2857 0
  • A question about PCC

    A question about PCC

    Hello,I have a question about PCC:

    PCC is mentioned in the paper. After obtaining the classification result through the segmentation model, how to obtain the change detection result through the classification result? Is it a direct subtraction?

    opened by Hyd1999618 0
  • [Feature] support [0~255] gt

    [Feature] support [0~255] gt

    The original dataset of LEVIR-CD consists of 0 and 255.

    However, the segmentation loss of this code works only when it consists of 0 and 1.

    Therefore, I added a code to change gt's 255 to 1.

    opened by seominseok0429 1
Releases(v0.1.0)
Owner
Zhuo Zheng
CV IN RS. Ph.D. Student.
Zhuo Zheng
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022