A Closer Look at Structured Pruning for Neural Network Compression

Overview

A Closer Look at Structured Pruning for Neural Network Compression

Code used to reproduce experiments in https://arxiv.org/abs/1810.04622.

To prune, we fill our networks with custom MaskBlocks, which are manipulated using Pruner in funcs.py. There will certainly be a better way to do this, but we leave this as an exercise to someone who can code much better than we can.

Setup

This is best done in a clean conda environment:

conda create -n prunes python=3.6
conda activate prunes
conda install pytorch torchvision -c pytorch

Repository layout

-train.py: contains all of the code for training large models from scratch and for training pruned models from scratch
-prune.py: contains the code for pruning trained models
-funcs.py: contains useful pruning functions and any functions we used commonly

CIFAR Experiments

First, you will need some initial models.

To train a WRN-40-2:

python train.py --net='res' --depth=40 --width=2.0 --data_loc=
   
     --save_file='res'

   

The default arguments of train.py are suitable for training WRNs. The following trains a DenseNet-BC-100 (k=12) with its default hyperparameters:

python train.py --net='dense' --depth=100 --data_loc=
   
     --save_file='dense' --no_epochs 300 -b 64 --epoch_step '[150,225]' --weight_decay 0.0001 --lr_decay_ratio 0.1

   

These will automatically save checkpoints to the checkpoints folder.

Pruning

Once training is finished, we can prune our networks using prune.py (defaults are set to WRN pruning, so extra arguments are needed for DenseNets)

python prune.py --net='res'   --data_loc=
   
     --base_model='res' --save_file='res_fisher'
python prune.py --net='res'   --data_loc=
    
      --l1_prune=True --base_model='res' --save_file='res_l1'

python prune.py --net='dense' --depth 100 --data_loc=
     
       --base_model='dense' --save_file='dense_fisher' --learning_rate 1e-3 --weight_decay 1e-4 --batch_size 64 --no_epochs 2600
python prune.py --net='dense' --depth 100 --data_loc=
      
        --l1_prune=True --base_model='dense' --save_file='dense_l1'  --learning_rate 1e-3 --weight_decay 1e-4 --batch_size 64  --no_epochs 2600


      
     
    
   

Note that the default is to perform Fisher pruning, so you don't need to pass a flag to use it.
Once finished, we can train the pruned models from scratch, e.g.:

python train.py --data_loc=
   
     --net='res' --base_file='res_fisher_
    
     _prunes' --deploy --mask=1 --save_file='res_fisher_
     
      _prunes_scratch'

     
    
   

Each model can then be evaluated using:

python train.py --deploy --eval --data_loc=
   
     --net='res' --mask=1 --base_file='res_fisher_
    
     _prunes'

    
   

Training Reduced models

This can be done by varying the input arguments to train.py. To reduce depth or width of a WRN, change the corresponding option:

python train.py --net='res' --depth=
   
     --width=
    
      --data_loc=
     
       --save_file='res_reduced'

     
    
   

To add bottlenecks, use the following:

python train.py --net='res' --depth=40 --width=2.0 --data_loc=
   
     --save_file='res_bottle' --bottle --bottle_mult 
    

    
   

With DenseNets you can modify the depth or growth, or use --bottle --bottle_mult as above.

Acknowledgements

Jack Turner wrote the L1 stuff, and some other stuff for that matter.

Code has been liberally borrowed from many a repo, including, but not limited to:

https://github.com/xternalz/WideResNet-pytorch
https://github.com/bamos/densenet.pytorch
https://github.com/kuangliu/pytorch-cifar
https://github.com/ShichenLiu/CondenseNet

Citing this work

If you would like to cite this work, please use the following bibtex entry:

@article{crowley2018pruning,
  title={A Closer Look at Structured Pruning for Neural Network Compression},
  author={Crowley, Elliot J and Turner, Jack and Storkey, Amos and O'Boyle, Michael},
  journal={arXiv preprint arXiv:1810.04622},
  year={2018},
  }
Owner
Bayesian and Neural Systems Group
Machine learning research group @ University of Edinburgh
Bayesian and Neural Systems Group
PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

Eugene Khvedchenya 1.3k Jan 05, 2023
PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

Cong Cai 12 Dec 19, 2021
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
A few Windows specific scripts for PyTorch

It is a repo that contains scripts that makes using PyTorch on Windows easier. Easy Installation Update: Starting from 0.4.0, you can go to the offici

408 Dec 15, 2022
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

Matthias Fey 1.2k Jan 07, 2023
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and

Haichuan Yang 16 Jun 15, 2022
TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards

TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards. It can reduce GPU memory and scale up the training when the model has massive linear layers (e.g., ViT, BERT and

Kaiyu Yue 275 Nov 22, 2022
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench

Tristan Deleu 1.7k Jan 06, 2023
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for

Remi 8.7k Dec 31, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision

🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.

Hugging Face 3.5k Jan 08, 2023
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf

README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent

DreamQuark 2k Dec 27, 2022
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
An implementation of Performer, a linear attention-based transformer, in Pytorch

Performer - Pytorch An implementation of Performer, a linear attention-based transformer variant with a Fast Attention Via positive Orthogonal Random

Phil Wang 900 Dec 22, 2022
On the Variance of the Adaptive Learning Rate and Beyond

RAdam On the Variance of the Adaptive Learning Rate and Beyond We are in an early-release beta. Expect some adventures and rough edges. Table of Conte

Liyuan Liu 2.5k Dec 27, 2022
An optimizer that trains as fast as Adam and as good as SGD.

AdaBound An optimizer that trains as fast as Adam and as good as SGD, for developing state-of-the-art deep learning models on a wide variety of popula

LoLo 2.9k Dec 27, 2022
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.

Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co

Terence Parr 704 Dec 14, 2022
ocaml-torch provides some ocaml bindings for the PyTorch tensor library.

ocaml-torch provides some ocaml bindings for the PyTorch tensor library. This brings to OCaml NumPy-like tensor computations with GPU acceleration and tape-based automatic differentiation.

Laurent Mazare 369 Jan 03, 2023
torch-optimizer -- collection of optimizers for Pytorch

torch-optimizer torch-optimizer -- collection of optimizers for PyTorch compatible with optim module. Simple example import torch_optimizer as optim

Nikolay Novik 2.6k Jan 03, 2023
Use Jax functions in Pytorch with DLPack

Use Jax functions in Pytorch with DLPack

Phil Wang 106 Dec 17, 2022