The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

Overview

Coronary Artery Tracking via 3D CNN Classification Pytorch

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

Link to paper here.

Key idea

A 3D dilated CNN is trained to predict the most likely direction and radius of an artery at any given point in a CCTA image based on a local image patch. We use a 3D Fibonacci ball to model a CNN Tracker, where the radius of the ball represents the radius of the vessel at the current position, and the points on the ball represent a possible direction of movement.

Starting from a single seed point placed manually or automatically anywhere in a coronary artery, a tracker follows the vessel centerline in two directions using the predictions of the CNN.

Tracking is terminated when no direction can be identified with high certainty.

In order to create a vessel tree automatically, we need to train three neural networks.

  • Firstly, we need to train a centerline net to predict the two directions(d0, d1) of the current position that can be moved and the vessel radius.
  • Secondly, we need to train a neural network to find two entrance points of a coronary artery.
  • The third network is responsible for placing seed points in the image

Architecture of Centerline Net

Layer 1 2 3 4 5 6 7
Kernel width 3 3 3 3 3 1 1
Dilation 1 1 2 4 1 1 1
Channels 32 32 32 32 64 64 D+1
Field width 3 5 9 17 19 19 19

The number of output channels is equal to the number of potential directions in D, plus one channel for radius estimation.

The architecture of seedspint_net and ostiapoint_net are very similar to centerline_net. The only difference is in the output layer: instead of combining classification and regression, the final layer only performs regression.

Installation

To install all the required dependencies:

$ pip install -r requirement.txt

Training

1. Preparing CTA08 dataset

Tip:
CAT08 datasets need to be registered and certified in this website before it can be downloaded. It should be noted that your registration email may not be received by the server of the above website. If you have this problem, download this form, compile it and contact Dr.Theo van Walsum ([email protected]).

  1. Unzip training.tar.gz to:
    Coronary-Artery-Tracking-via-3D-CNN-Classification/
            -data_process_tools/
                -train_data/
                    -dataset00/
                    -dataset01/
                    -dataset02/
                    -dataset03/
                    -dataset04/
                    -dataset05/
                    -dataset06/
                    -dataset07/
  1. Create spacing_info.csv and nii.gz data
python3 creat_spacinginfo_data_tool.py
  1. Create centerline patch data
  • Create no offset samples
python3 centerline_patch_generater_no_offset.py
  • Create samples with offset
python3 centerline_patch_generater_offset.py
  1. Create seeds patch data
  • Create positve samples
python3 seedpoints_patch_generater_postive.py     
  • Create negative sample
python3 seedpoints_patch_generater_negative.py

those scripts will automaticlly create folders

-data_process_tools/
    -patch_data/
         -centerline_patch/
            -no_offset/
                 -point_500_gp_1/
                     -d0/
                     d0_patch_info_500.csv 
                     .
                     .
                     .
                     -d7/
                     d7_patch_info_500.csv
            -offset/
                  -point_500_gp_1/
                     -d0/
                     d0_patch_info_500.csv
                     .
                     .
                     .
                     -d7/
                     d7_patch_info_500.csv
  1. Create osita patch data
  • Create positve samples
python3 ostiapoints_patch_generater_positive.py
  • Create negative sample
python3 ostiapoints_patch_generater_negative.py

It should be noted that 8 samples corresponding to the data will be produced here, and the specific training set and test set division also need to write your own code to divide the data set and generate the train CSV file and val CSV file

2.Training Models

  1. Training centerline net
cd centerline_train_tools/
CUDA_VISIBLE_DEVICES=0 python3 centerline_train_tools.py
  1. Training seedpoints net
cd seedspoints_train_tools/
CUDA_VISIBLE_DEVICES=0 python3 seeds_train_tools.py
  1. Training ostiapoints net
cd ostiapoints_train_tools
CUDA_VISIBLE_DEVICES=0 python3 ostia_train_tools.py 

3.Create coronary artery vessels tree

cd infer_tools_tree/

First, you need to modify settingy.yaml replacing the path inside to the path of the file you saved

python3 vessels_tree_infer.py

The predicted vessel tree is shown in the figure below

The vessels from different seed points are spliced by breadth-first search, and then a complete single vessel is generated by depth-first search

Seedpoints net will generate 200 seed points as shown in the figure below. It can be seen that the seed points are distributed near several coronary arteries

References

@article{wolterink2019coronary,
  title={Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier},
  author={Wolterink, Jelmer M and van Hamersvelt, Robbert W and Viergever, Max A and Leiner, Tim Leiner, Ivana},
  journal={Medical image analysis},
  volume={51},
  pages={46--60},
  year={2019},
  publisher={Elsevier}
}
Owner
James
I am an investigator in the SenseTime. My research interests are in 3D Vision and Multiple Object Tracking.
James
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022