Object detection, 3D detection, and pose estimation using center point detection:

Overview

Objects as Points

Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points,
Xingyi Zhou, Dequan Wang, Philipp Krähenbühl,
arXiv technical report (arXiv 1904.07850)

Contact: [email protected]. Any questions or discussions are welcomed!

Updates

  • (June, 2020) We released a state-of-the-art Lidar-based 3D detection and tracking framework CenterPoint.
  • (April, 2020) We released a state-of-the-art (multi-category-/ pose-/ 3d-) tracking extension CenterTrack.

Abstract

Detection identifies objects as axis-aligned boxes in an image. Most successful object detectors enumerate a nearly exhaustive list of potential object locations and classify each. This is wasteful, inefficient, and requires additional post-processing. In this paper, we take a different approach. We model an object as a single point -- the center point of its bounding box. Our detector uses keypoint estimation to find center points and regresses to all other object properties, such as size, 3D location, orientation, and even pose. Our center point based approach, CenterNet, is end-to-end differentiable, simpler, faster, and more accurate than corresponding bounding box based detectors. CenterNet achieves the best speed-accuracy trade-off on the MS COCO dataset, with 28.1% AP at 142 FPS, 37.4% AP at 52 FPS, and 45.1% AP with multi-scale testing at 1.4 FPS. We use the same approach to estimate 3D bounding box in the KITTI benchmark and human pose on the COCO keypoint dataset. Our method performs competitively with sophisticated multi-stage methods and runs in real-time.

Highlights

  • Simple: One-sentence method summary: use keypoint detection technic to detect the bounding box center point and regress to all other object properties like bounding box size, 3d information, and pose.

  • Versatile: The same framework works for object detection, 3d bounding box estimation, and multi-person pose estimation with minor modification.

  • Fast: The whole process in a single network feedforward. No NMS post processing is needed. Our DLA-34 model runs at 52 FPS with 37.4 COCO AP.

  • Strong: Our best single model achieves 45.1AP on COCO test-dev.

  • Easy to use: We provide user friendly testing API and webcam demos.

Main results

Object Detection on COCO validation

Backbone AP / FPS Flip AP / FPS Multi-scale AP / FPS
Hourglass-104 40.3 / 14 42.2 / 7.8 45.1 / 1.4
DLA-34 37.4 / 52 39.2 / 28 41.7 / 4
ResNet-101 34.6 / 45 36.2 / 25 39.3 / 4
ResNet-18 28.1 / 142 30.0 / 71 33.2 / 12

Keypoint detection on COCO validation

Backbone AP FPS
Hourglass-104 64.0 6.6
DLA-34 58.9 23

3D bounding box detection on KITTI validation

Backbone FPS AP-E AP-M AP-H AOS-E AOS-M AOS-H BEV-E BEV-M BEV-H
DLA-34 32 96.9 87.8 79.2 93.9 84.3 75.7 34.0 30.5 26.8

All models and details are available in our Model zoo.

Installation

Please refer to INSTALL.md for installation instructions.

Use CenterNet

We support demo for image/ image folder, video, and webcam.

First, download the models (By default, ctdet_coco_dla_2x for detection and multi_pose_dla_3x for human pose estimation) from the Model zoo and put them in CenterNet_ROOT/models/.

For object detection on images/ video, run:

python demo.py ctdet --demo /path/to/image/or/folder/or/video --load_model ../models/ctdet_coco_dla_2x.pth

We provide example images in CenterNet_ROOT/images/ (from Detectron). If set up correctly, the output should look like

For webcam demo, run

python demo.py ctdet --demo webcam --load_model ../models/ctdet_coco_dla_2x.pth

Similarly, for human pose estimation, run:

python demo.py multi_pose --demo /path/to/image/or/folder/or/video/or/webcam --load_model ../models/multi_pose_dla_3x.pth

The result for the example images should look like:

You can add --debug 2 to visualize the heatmap outputs. You can add --flip_test for flip test.

To use this CenterNet in your own project, you can

import sys
CENTERNET_PATH = /path/to/CenterNet/src/lib/
sys.path.insert(0, CENTERNET_PATH)

from detectors.detector_factory import detector_factory
from opts import opts

MODEL_PATH = /path/to/model
TASK = 'ctdet' # or 'multi_pose' for human pose estimation
opt = opts().init('{} --load_model {}'.format(TASK, MODEL_PATH).split(' '))
detector = detector_factory[opt.task](opt)

img = image/or/path/to/your/image/
ret = detector.run(img)['results']

ret will be a python dict: {category_id : [[x1, y1, x2, y2, score], ...], }

Benchmark Evaluation and Training

After installation, follow the instructions in DATA.md to setup the datasets. Then check GETTING_STARTED.md to reproduce the results in the paper. We provide scripts for all the experiments in the experiments folder.

Develop

If you are interested in training CenterNet in a new dataset, use CenterNet in a new task, or use a new network architecture for CenterNet, please refer to DEVELOP.md. Also feel free to send us emails for discussions or suggestions.

Third-party resources

License

CenterNet itself is released under the MIT License (refer to the LICENSE file for details). Portions of the code are borrowed from human-pose-estimation.pytorch (image transform, resnet), CornerNet (hourglassnet, loss functions), dla (DLA network), DCNv2(deformable convolutions), tf-faster-rcnn(Pascal VOC evaluation) and kitti_eval (KITTI dataset evaluation). Please refer to the original License of these projects (See NOTICE).

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{zhou2019objects,
  title={Objects as Points},
  author={Zhou, Xingyi and Wang, Dequan and Kr{\"a}henb{\"u}hl, Philipp},
  booktitle={arXiv preprint arXiv:1904.07850},
  year={2019}
}
Owner
Xingyi Zhou
CS Ph.D. student at UT Austin.
Xingyi Zhou
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022