LabelMe annotation tool source code

Overview

LabelMe annotation tool source code

Here you will find the source code to install the LabelMe annotation tool on your server. LabelMe is an annotation tool writen in Javascript for online image labeling. The advantage with respect to traditional image annotation tools is that you can access the tool from anywhere and people can help you to annotate your images without having to install or copy a large dataset onto their computers.

CITATION:

B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman. LabelMe: a Database and Web-based Tool for Image Annotation. International Journal of Computer Vision, 77(1-3):157-173, 2008. Project page

DOWNLOAD:

You can download a zip file of the source code directly.

Alternatively, you can clone it from GitHub as follows:

$ git clone https://github.com/CSAILVision/LabelMeAnnotationTool.git

CONTENTS:

  • Images - This is where your images go.
  • Annotations - This is where the annotations are collected.
  • Masks - This is where the segmentation masks are collected (scribble mode).
  • Scribbles - This is where the scribbles are collected (scribble mode).
  • tool.html - Main web page for LabelMe annotation tool.
  • annotationTools - Directory with source code.
  • annotationCache - Location of temporary files.
  • Icons - Icons used on web page.
  • DockerFiles - Directory with Docker files for installation via Docker.

QUICK START INSTRUCTIONS:

  1. Put LabelMe annotation tool code on web server (see web server configuration requirements below).

  2. On the command line run:

    $ make

    This will set a global variable that the perl scripts need. Note If you move the location of the code, then you need to re-run "make" to refresh the global variable.

  3. Create a subfolder inside the "Images" folder and place your images there. For example: "Images/example_folder/img1.jpg". Make sure all of your images have a ".jpg" extension and the folders/filenames have alphanumeric characters (i.e. no spaces or funny characters).

  4. Point your web browser to the following URL:

    http://www.yourserver.edu/path/to/LabelMe/tool.html?collection=LabelMe&mode=f&folder=example_folder&image=img1.jpg

  5. Label your image. Press "show me another image" to go to the next image in the folder.

  6. Voila! Your annotations will appear inside of the "Annotations" folder.

WEB SERVER REQUIREMENTS:

You will need the following to set up the LabelMe tool on your web server:

  • Run an Apache server (see special configuration instructions for Ubuntu or Windows).

  • Enable authconfig in Apache so that server side includes (SSI) will work. This will allow SVG drawing capabilities. This is the most common source of errors, so make sure this step is working.

  • Allow perl/CGI scripts to run. This is the second most common source of errors.

  • Make sure the php5 and libapache2-mod-php5 libraries are installed. You can install them on Linux by running the following:

    $ sudo apt-get install php5 libapache2-mod-php5
  • (Optional) See special configuration instructions if you are installing on Ubuntu or Windows.

If you are not able to draw polygons, check to see if the page is loaded as an "application/xhtml+xml" page (you can see this in Firefox by navigating to Tools->Page Info). If it is not, be sure that SSI are enabled (see above for enabling authconfig in Apache).

Make sure that your images have read permissions on your web server and folders in the "Annotations" folder have write permissions. Also, "annotationCache/TmpAnnotations" needs to have write permissions.

FEATURES OF THE ANNOTATION TOOL:

  • The following are URL variables you can pass to the annotation tool:

    • mode=im - Only show the image and drawing canvas (do not show anything outside of the image.
    • mode=mt - Mechanical Turk mode.
    • mode=f - Pressing "next image" button goes to next image in the folder.
    • mode=i - Pressing "next image" button goes to random image in the default LabelMe collection.
    • mode=c - Go to next image in the collection (set via the dirlist).
    • username=johndoe - Sets username for labeling session.
    • collection=LabelMe - Uses the default LabelMe collection list. See below for setting up a new collection list.
    • folder=MyLabelMeFolder - LabelMe folder where the image lives.
    • image=image.jpg - LabelMe image to annotate.
    • objects=car,person,building - When popup bubble appears asking the user for the object name, the user selects one of these objects appearing as a drop-down list.
    • scribble=false - Turns off scribble mode.
    • objlist=visible - This controls whether the object list on the right side is visible or not. Use "objlist=hidden" to make it hidden.
    • actions=n - Control what actions the user is allowed to do. To set the desired actions, use any combination of the letters below. For example, to allow renaming, modify control points, and delete actions, then set "actions=rmd". By default, "actions=n". The following are possible actions:
      • n - create and edit new polygons
      • r - rename existing objects
      • m - modify control points on existing objects
      • d - delete existing objects
      • a - allow all actions
      • v - view polygons only (do not allow any editing)
    • viewobj=e - Control which objects the user sees. Use one of the following possible options below. By default, "viewobj=e". Note that for deleted objects, these will be shown in gray and the object name in the object list will be italicized.
      • e - view new and previously labeled objects
      • n - view new objects only
      • d - view new and deleted objects
      • a - view all objects (new, existing, deleted)

    The following are for Mechanical Turk mode:

    • mt_sandbox=true - Use Mechanical Turk sandbox mode. This mode is used for debugging on Mechanical Turk. You may want to start with this variable set to make sure everything works.
    • N=5 - The worker is required to label at least 5 polygons. Use N=inf to allow the worker to label as many as they want.
    • mt_intro=http://yourpage.com - You may customize the instructions that the worker sees. By default, the following instructions are given to the workers.
    • mt_instructions=Place your instructions here - You may customize the one-line instructions that the worker sees at the top of the labeling task. By default, the instructions are: Please label as many objects as you want in this image.
  • You can create a collection of images to label by running the following on the command line:

    $ cd ./annotationTools/sh/
    $ ./populate_dirlist.sh

    This will create a list of all images inside the "./Images" folder, and will appear inside the file "./annotationCache/DirLists/labelme.txt".

    You can then label images inside the collection using the following URL:

    http://www.yourserver.edu/path/to/LabelMe/tool.html?collection=labelme&mode=i

    You can create a collection consisting of a particular folder by running the following from the command line:

    $ cd ./annotationTools/sh/
    $ ./populate_dirlist.sh my_collection.txt example_folder

    The list will appear inside "./annotationCache/DirLists/my_collection.txt". You can then label images inside the collection using the following URL:

    http://www.yourserver.edu/path/to/LabelMe/tool.html?collection=my_collection&mode=i

  • You can change the layout of the annotation files for your collection by modifying the XML file template inside of "./annotationCache/XMLTemplates/your_collection.xml". The default template is "./annotationCache/XMLTemplates/labelme.xml".

  • A log file of the annotation tool actions are recorded in "./annotationCache/Logs/logfile.txt". Make sure that this file has write permissions.

CODE API

The following is a brief overview of the source code. Please see the Javascript code API for more details.

  • tool.html - This is the entry point for the annotation tool. The main functionality is to insert all of the javascript code and lay down the drawing canvases.

  • annotationTools/js/ - This folder contains all of the javascript code for the annotation tool functionalities. We provide the code API for the Javascript source code, which has been automatically extracted from the source code comments.

  • annotationTools/perl/ - This folder contains all of the Perl scripts used for communication with the server back-end.

  • annotationTools/css/ - This folder contains all of the CSS style definitions.

  • annotationTools/html/ - This folder contains auxillary HTML files (e.g. for Mechanical Turk instructions, etc.).


(c) 2015, MIT Computer Science and Artificial Intelligence Laboratory

Owner
MIT CSAIL Computer Vision
MIT CSAIL Computer Vision
Image Processing - Make noise images clean

影像處理-影像降躁化(去躁化) (Image Processing - Make Noise Images Clean) 得力於電腦效能的大幅提升以及GPU的平行運算架構,讓我們能夠更快速且有效地訓練AI,並將AI技術應用於不同領域。本篇將帶給大家的是 「將深度學習應用於影像處理中的影像降躁化 」,

2 Aug 04, 2022
Tool made for the FWA Yearbook Team to resize multiple images quickly.

ImageResize Tool Tool made for the FWA Yearbook Team to resize multiple images quickly. Make sure to check this repo for future updates How to Use The

LGobin 1 Jan 07, 2022
This app finds duplicate to near duplicate images by generating a hash value for each image stored with a specialized data structure called VP-Tree which makes searching an image on a dataset of 100Ks almost instantanious

Offline Reverse Image Search Overview This app finds duplicate to near duplicate images by generating a hash value for each image stored with a specia

53 Nov 15, 2022
Image Processing HighPass Filter With Python

Image_Processing_HighPassFilter High Pass Filter take the high frequency and ignore the low frequency High Pass Filter can be use to sharpening an ima

Felix Pratamasan 1 Dec 27, 2021
Python Digital Art Generator

Python Digital Art Generator The main goal of this repository is to generate all possible layers permutations given by the user in order to get unique

David Cuentas Mar 3 Mar 12, 2022
A Python package implementing various CFA (Colour Filter Array) demosaicing algorithms and related utilities.

Colour - Demosaicing A Python package implementing various CFA (Colour Filter Array) demosaicing algorithms and related utilities. It is open source a

colour-science 218 Dec 04, 2022
A scalable implementation of WobblyStitcher for 3D microscopy images

WobblyStitcher Introduction A scalable implementation of WobblyStitcher Dependencies $ python -m pip install numpy scikit-image Visualization ImageJ

CSE Lab, ETH Zurich 7 Jul 25, 2022
Napari simpleitk image processing

napari-simpleitk-image-processing (n-SimpleITK) Process images using SimpleITK in napari Usage Filters of this napari plugin can be found in the Tools

Robert Haase 11 Dec 19, 2022
A simple image to text converter with GUI!

TEXTEMAGE! Textemage is a quick tool that extracts text from images, it is a Python based GUI program(also available in executable version). This is a

Akascape 5 Oct 26, 2022
Tools for making image cutouts from sets of TESS full frame images

Cutout tools for astronomical images Astrocut provides tools for making cutouts from sets of astronomical images with shared footprints. It is under a

Space Telescope Science Institute 20 Dec 16, 2022
This repository will help you get label for images in Stanford Cars Dataset.

STANFORD CARS DATASET stanford-cars "The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144 training images and

Nguyễn Trường Lâu 3 Sep 20, 2022
Generates images of calendar month tables and can paste them onto suitable photos.

📆 calendizer README Generates images of calendar month tables and can paste them onto suitable photos. A quick way to make your own calendar for prin

Sean Ryan 2 Dec 14, 2022
Simple Python image processing & automatization project for a simple web based game

What is this? Simple Python image processing & automatization project for a simple web based game Made using only Github Copilot (except the color and

SGeri 2 Aug 15, 2022
Next-generation of the non-destructive, node-based 2D image graphics editor

Non-destructive, node-based 2D image graphics editor written in Python, focused on simplicity, speed, elegance, and usability

Gimel Studio 238 Dec 30, 2022
Generate different types of random avatars.

avatar-generator Generate different types of random avatars. Requirements Python3 pytorch=1.6 cv2=3.4 tqdm 1. Github-like avatars python generate_gi

Ming 11 Apr 02, 2022
Graphical tool to make photo collage posters

PhotoCollage Graphical tool to make photo collage posters PhotoCollage allows you to create photo collage posters. It assembles the input photographs

Adrien Vergé 350 Jan 02, 2023
Cat avatars for adult independent users

Cat avatars for adult independent users Samples (Natasha, wake up!) Usage Check values from https://shantichat.github.io/avacats/index.json: { "sizes"

4 Nov 05, 2021
GTK and Python based, simple multiple image editor tool

System Monitoring Center GTK3 and Python3 based, simple multiple image editor tool. Note: Development of this application is not completed yet. The ap

Hakan Dündar 1 Feb 02, 2022
Convert Image to ASCII Art

Convert Image to ASCII Art Persiapan aplikasi ini menggunakan bahasa python dan beberapa package python. oleh karena itu harus menginstall python dan

Huda Damar 48 Dec 20, 2022
EmbedToolV2 - 2.0 Version of DraKenCodeZ/ImageEmbedTool

EmbedToolV2 - 2.0 Version of DraKenCodeZ/ImageEmbedTool

DraKenCodeZ 1 Dec 07, 2021