Decision Weights in Prospect Theory

Overview

Decision Weights in Prospect Theory

It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics, I became very interested in Prospect Theory (see Chapter 29 of Thinking, Fast and Slow). A very interesting part of Prospect theory is that it is not probabilities that are used in the calculation of expected value:

ev

Here, the q's are not the probabilities of outcome z, but it is from another probability measure called decision weights that humans actually use to weigh outcomes. Using a change of measure, we can observe the relationship between the actual probabilities and the decision weights:

cmg

My interest is in this change of measure.

The Setup

Suppose you have two choices:

  1. Lottery A: have a 1% chance to win $10 000,
  2. Lottery B: have a 99% chance to win $101

Which would you prefer?

Well, under the real world probabilty measure, these two choices are equal: .99 x 101 = .01 x 10000. Thus a rational agent would be indifferent to either option. But a human would have a preference: they would see one more valuable than the other. Thus:

inq

rewritten:

inq2

and dividing:

inq3

What's left to do is determine the direction of the first inequality.

Mechanical Turk it.

So I created combinations of probabilities and prizes, all with equal real-world expected value, and asked Turkers to pick which one they preferred. Example:

Imgur

Again, notice that .5 x $200 = .8 x $125 = $100. The original HIT data and the python scripts that generate are in the repo, plus the MTurk data. Each HIT received 10 turkers.

Note: The Turking cost me $88.40, if you'd like to give back over Gittip, that would be great =)

Note: I called the first choice Lottery A and the second choice Lottery B.

Analysis

Below is a slightly inappropriate heatmap of the choices people made. If everyone was rational, and hence indifferent to the two choices, the probabilities should hover around 0.5. This is clearly not the case.

Imgur

What else do we see here?

  1. As expected, people are loss averse: every point in the lower-diagonal is where lottery A had a high probability of success than B. The matrix shows that most points in here are greater than 50%, thus people chose the safer bet more often.
  2. The exception to the above point is the fact that 1% is choosen more favourably over 2%. This is an instance of the possibility effect. People are indifferent between 1% and 2%, as they are both so rare, thus will pick the one with larger payoff.

FAQ

  1. Why did I ask the Turkers to deeply imagine winning $50 dollars before answering the question? This was to offset a potential anchoring effect: if a Turkers first choice had prize $10 000, then any other prize would have looked pitiful, as the anchor had been set at $10 000. By having them imagine winning $50 (lower than any prize), then any prize they latter saw would appear better than this anchor.

  2. Next steps? I'd like to try this again, with more control over the Turkers (have a more diverse set of Turkers on it).

This data is mirrored and can be queried via API here

Owner
Cameron Davidson-Pilon
CEO of Pioreactor. Former Director of Data Science @Shopify. Author of Bayesian Methods for Hackers and DataOrigami.
Cameron Davidson-Pilon
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks l

Ibotta 84 Dec 29, 2022
Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python Overview Bank Jago has attracted investors' attention since the end

Najibulloh Asror 3 Feb 10, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023